Two-step hierarchical binary classification of cancerous skin lesions using transfer learning and the random forest algorithm.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Taofik Ahmed Suleiman, Daniel Tweneboah Anyimadu, Andrew Dwi Permana, Hsham Abdalgny Abdalwhab Ngim, Alessandra Scotto di Freca
{"title":"Two-step hierarchical binary classification of cancerous skin lesions using transfer learning and the random forest algorithm.","authors":"Taofik Ahmed Suleiman, Daniel Tweneboah Anyimadu, Andrew Dwi Permana, Hsham Abdalgny Abdalwhab Ngim, Alessandra Scotto di Freca","doi":"10.1186/s42492-024-00166-7","DOIUrl":null,"url":null,"abstract":"<p><p>Skin lesion classification plays a crucial role in the early detection and diagnosis of various skin conditions. Recent advances in computer-aided diagnostic techniques have been instrumental in timely intervention, thereby improving patient outcomes, particularly in rural communities lacking specialized expertise. Despite the widespread adoption of convolutional neural networks (CNNs) in skin disease detection, their effectiveness has been hindered by the limited size and data imbalance of publicly accessible skin lesion datasets. In this context, a two-step hierarchical binary classification approach is proposed utilizing hybrid machine and deep learning (DL) techniques. Experiments conducted on the International Skin Imaging Collaboration (ISIC 2017) dataset demonstrate the effectiveness of the hierarchical approach in handling large class imbalances. Specifically, employing DenseNet121 (DNET) as a feature extractor and random forest (RF) as a classifier yielded the most promising results, achieving a balanced multiclass accuracy (BMA) of 91.07% compared to the pure deep-learning model (end-to-end DNET) with a BMA of 88.66%. The RF ensemble exhibited significantly greater efficiency than other machine-learning classifiers in aiding DL to address the challenge of learning with limited data. Furthermore, the implemented predictive hybrid hierarchical model demonstrated enhanced performance while significantly reducing computational time, indicating its potential efficiency in real-world applications for the classification of skin lesions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11183002/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-024-00166-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Skin lesion classification plays a crucial role in the early detection and diagnosis of various skin conditions. Recent advances in computer-aided diagnostic techniques have been instrumental in timely intervention, thereby improving patient outcomes, particularly in rural communities lacking specialized expertise. Despite the widespread adoption of convolutional neural networks (CNNs) in skin disease detection, their effectiveness has been hindered by the limited size and data imbalance of publicly accessible skin lesion datasets. In this context, a two-step hierarchical binary classification approach is proposed utilizing hybrid machine and deep learning (DL) techniques. Experiments conducted on the International Skin Imaging Collaboration (ISIC 2017) dataset demonstrate the effectiveness of the hierarchical approach in handling large class imbalances. Specifically, employing DenseNet121 (DNET) as a feature extractor and random forest (RF) as a classifier yielded the most promising results, achieving a balanced multiclass accuracy (BMA) of 91.07% compared to the pure deep-learning model (end-to-end DNET) with a BMA of 88.66%. The RF ensemble exhibited significantly greater efficiency than other machine-learning classifiers in aiding DL to address the challenge of learning with limited data. Furthermore, the implemented predictive hybrid hierarchical model demonstrated enhanced performance while significantly reducing computational time, indicating its potential efficiency in real-world applications for the classification of skin lesions.

利用迁移学习和随机森林算法对癌症皮肤病变进行两步分层二元分类。
皮损分类在各种皮肤病的早期检测和诊断中起着至关重要的作用。计算机辅助诊断技术的最新进展有助于及时干预,从而改善患者的治疗效果,尤其是在缺乏专业知识的农村社区。尽管卷积神经网络(CNN)在皮肤病检测中得到了广泛应用,但由于可公开获取的皮肤病变数据集规模有限且数据不平衡,其有效性受到了阻碍。在这种情况下,我们提出了一种两步分层二元分类方法,利用混合机器学习和深度学习(DL)技术。在国际皮肤成像合作组织(ISIC 2017)数据集上进行的实验证明了分层方法在处理大类不平衡方面的有效性。具体来说,采用 DenseNet121(DNET)作为特征提取器和随机森林(RF)作为分类器取得了最有希望的结果,实现了 91.07% 的平衡多类准确率(BMA),而纯深度学习模型(端到端 DNET)的 BMA 为 88.66%。与其他机器学习分类器相比,射频集合在帮助 DL 应对利用有限数据进行学习的挑战方面表现出更高的效率。此外,所实施的预测性混合分层模型在显著减少计算时间的同时,还提高了性能,这表明它在皮肤病变分类的实际应用中具有潜在的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信