Magdeline E Anderson, Rachel R Harman, Tania N Kim
{"title":"Ground beetle movement is deterred by habitat edges: a mark-release-recapture study on the effectiveness of border crops in an agricultural landscape.","authors":"Magdeline E Anderson, Rachel R Harman, Tania N Kim","doi":"10.1093/jisesa/ieae062","DOIUrl":null,"url":null,"abstract":"<p><p>Border crops can increase beneficial insect biodiversity within agricultural fields by supplementing insects with food and nesting resources. However, the effectiveness of border crops relies on insect movement between adjacent habitats and some insects might consider habitat boundaries as barriers. Therefore, understanding insect movement between habitats is needed to determine the effectiveness of border crops for ecosystem services such as pest control within agricultural habitats. Our objective was to compare ground beetle (Coleoptera: Carabidae) movement across soybean plots that were bordered by corn and grassland habitat to determine whether habitat boundaries were considered barriers of movement to predatory beetles. Using a grid of pitfall traps within these habitats, we conducted a mark, release, and recapture experiment to track and evaluate ground beetle movement patterns. We found that ground beetles stayed in the habitat of their release and that movement between habitats, despite the type of bordering habitat or type of edge, was uncommon. We also found that long-distance movement was rare as most beetles moved less than 5 m (regardless of release or recaptured habitat) and movement was perpendicular to habitat edges. These results suggest that any edge habitat, including agricultural-agricultural boundaries and natural-agricultural boundaries, are likely barriers to ground beetle movement. Therefore, in order for border crops to be effective in pest management by ground beetles, making habitat edges more permeable, especially using techniques such as edge softening, could promote cross-habitat movement and ultimately contribute to natural pest control in agricultural systems.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"24 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11181708/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieae062","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Border crops can increase beneficial insect biodiversity within agricultural fields by supplementing insects with food and nesting resources. However, the effectiveness of border crops relies on insect movement between adjacent habitats and some insects might consider habitat boundaries as barriers. Therefore, understanding insect movement between habitats is needed to determine the effectiveness of border crops for ecosystem services such as pest control within agricultural habitats. Our objective was to compare ground beetle (Coleoptera: Carabidae) movement across soybean plots that were bordered by corn and grassland habitat to determine whether habitat boundaries were considered barriers of movement to predatory beetles. Using a grid of pitfall traps within these habitats, we conducted a mark, release, and recapture experiment to track and evaluate ground beetle movement patterns. We found that ground beetles stayed in the habitat of their release and that movement between habitats, despite the type of bordering habitat or type of edge, was uncommon. We also found that long-distance movement was rare as most beetles moved less than 5 m (regardless of release or recaptured habitat) and movement was perpendicular to habitat edges. These results suggest that any edge habitat, including agricultural-agricultural boundaries and natural-agricultural boundaries, are likely barriers to ground beetle movement. Therefore, in order for border crops to be effective in pest management by ground beetles, making habitat edges more permeable, especially using techniques such as edge softening, could promote cross-habitat movement and ultimately contribute to natural pest control in agricultural systems.
期刊介绍:
The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.