Technological characterization and environment-friendly possibilities to reuse water treatment sludge in building materials.

IF 1.9 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL
J B Reis, W M K Levandoski, M Krogel, S T Ferrazzo, G D L Pasquali, E P Korf
{"title":"Technological characterization and environment-friendly possibilities to reuse water treatment sludge in building materials.","authors":"J B Reis, W M K Levandoski, M Krogel, S T Ferrazzo, G D L Pasquali, E P Korf","doi":"10.1080/10934529.2024.2367353","DOIUrl":null,"url":null,"abstract":"<p><p>Water treatment plants (WTPs) produce thousands of tons of sludge annually, which is destined for landfill disposal, an environmentally and economically impractical alternative. Chemical, mineralogical, and morphological characterization besides environmental classification has been performed for WTP sludge and it was evaluated application potential in building materials, from a literature review. The characterization was carried out by X-ray fluorescence spectrometry, X-ray diffraction, scanning electron microscopy analysis, and leaching and solubilization tests. The results show that the presence of activated charcoal residues from water treatment in one type of sludge was of little relevance for changes in the properties of the waste. Both sludges have a wide range of particle sizes, consisting mainly of silica, aluminum and iron oxides, as well as kaolinite, quartz, and iron minerals. Special attention must be paid to the solubilization of metallic contaminants to avoid contamination risks and order to make the application safer and more effective, it is necessary to study deeply ways to inert the WTP sludge. The sludges studied have a high potential for application in ceramic products, mortars, geopolymers and concrete paving stones. Depending on the type of building material, different contents of sludge in natural or calcined state can be incorporated.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2024.2367353","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Water treatment plants (WTPs) produce thousands of tons of sludge annually, which is destined for landfill disposal, an environmentally and economically impractical alternative. Chemical, mineralogical, and morphological characterization besides environmental classification has been performed for WTP sludge and it was evaluated application potential in building materials, from a literature review. The characterization was carried out by X-ray fluorescence spectrometry, X-ray diffraction, scanning electron microscopy analysis, and leaching and solubilization tests. The results show that the presence of activated charcoal residues from water treatment in one type of sludge was of little relevance for changes in the properties of the waste. Both sludges have a wide range of particle sizes, consisting mainly of silica, aluminum and iron oxides, as well as kaolinite, quartz, and iron minerals. Special attention must be paid to the solubilization of metallic contaminants to avoid contamination risks and order to make the application safer and more effective, it is necessary to study deeply ways to inert the WTP sludge. The sludges studied have a high potential for application in ceramic products, mortars, geopolymers and concrete paving stones. Depending on the type of building material, different contents of sludge in natural or calcined state can be incorporated.

在建筑材料中再利用水处理污泥的技术特征和环保可能性。
水处理厂(WTPs)每年产生数千吨污泥,这些污泥被送往垃圾填埋场处理,这在环境和经济上都是不切实际的选择。除了环境分类外,还对水处理厂污泥进行了化学、矿物学和形态学表征,并根据文献综述评估了其在建筑材料中的应用潜力。表征是通过 X 射线荧光光谱法、X 射线衍射法、扫描电子显微镜分析以及浸出和溶解试验进行的。结果表明,一种污泥中存在水处理活性炭残留物与废物性质的变化关系不大。这两种污泥的粒度范围很广,主要由二氧化硅、铝和铁氧化物以及高岭石、石英和铁矿物组成。必须特别注意金属污染物的溶解,以避免污染风险,为了使应用更安全、更有效,有必要深入研究水处理厂污泥的惰性化方法。所研究的污泥在陶瓷产品、灰泥、土工聚合物和混凝土铺路石中的应用潜力很大。根据建筑材料的类型,可以加入不同含量的天然或煅烧状态的污泥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
4.80%
发文量
93
审稿时长
3.0 months
期刊介绍: 14 issues per year Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信