Wen He , Xinyu Li , Xinmin Li , Minghui Guo , Mengxuan Zhang , Ruiwei Hu , Menghan Li , Shijia Ding , Yurong Yan
{"title":"Exploration of new ways for CRISPR/Cas12a activation: DNA hairpins without PAM and toehold and single strands containing DNA and RNA bases","authors":"Wen He , Xinyu Li , Xinmin Li , Minghui Guo , Mengxuan Zhang , Ruiwei Hu , Menghan Li , Shijia Ding , Yurong Yan","doi":"10.1016/j.jbiotec.2024.06.011","DOIUrl":null,"url":null,"abstract":"<div><p>The CRISPR/Cas12a system is emerging as a promising candidate for next-generation diagnostic biosensing platforms, with the discovery of new activation modes greatly expanding its applications. Here, we have identified two novel CRISPR/Cas12a system activation modes: PAM- and toehold-free DNA hairpins, and DNA-RNA hybrid strands. Utilizing a well-established real-time fluorescence method, we have demonstrated a strong correlation between DNA hairpin structures and Cas12a activation. Compared with previously reported activation modes involving single-stranded DNA and PAM-contained double-stranded DNA, the DNA hairpin activation way exhibits similar specificity and generality. Moreover, our findings indicate that increasing the number of RNA bases in DNA-RNA hybrid strands can decelerate the kinetics of Cas12a-triggered <em>trans</em>-cleavage of reporter probes. These newly discovered CRISPR/Cas12a activation ways hold significant potential for the development of high-performance biosensing strategies.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624001718","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The CRISPR/Cas12a system is emerging as a promising candidate for next-generation diagnostic biosensing platforms, with the discovery of new activation modes greatly expanding its applications. Here, we have identified two novel CRISPR/Cas12a system activation modes: PAM- and toehold-free DNA hairpins, and DNA-RNA hybrid strands. Utilizing a well-established real-time fluorescence method, we have demonstrated a strong correlation between DNA hairpin structures and Cas12a activation. Compared with previously reported activation modes involving single-stranded DNA and PAM-contained double-stranded DNA, the DNA hairpin activation way exhibits similar specificity and generality. Moreover, our findings indicate that increasing the number of RNA bases in DNA-RNA hybrid strands can decelerate the kinetics of Cas12a-triggered trans-cleavage of reporter probes. These newly discovered CRISPR/Cas12a activation ways hold significant potential for the development of high-performance biosensing strategies.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.