Corrigendum to: A logical model of Ewing sarcoma cell epithelial-to-mesenchymal transition supports the existence of hybrid cellular phenotypes https://doi.org/10.1002/1873-3468.14724
IF 3.5 4区 生物学Q1 Biochemistry, Genetics and Molecular Biology
{"title":"Corrigendum to: A logical model of Ewing sarcoma cell epithelial-to-mesenchymal transition supports the existence of hybrid cellular phenotypes https://doi.org/10.1002/1873-3468.14724","authors":"","doi":"10.1002/1873-3468.14945","DOIUrl":null,"url":null,"abstract":"<p>This corrigendum has been published to correct errors identified by the authors after publication. These errors were introduced during the preparation of the figures and table. The authors sincerely apologize for any confusion that those minor errors in the original version of this article may have created and emphasize that these mistakes do not affect the conclusions of the article.</p><p><b>Fig. 3.</b> Analysis of model perturbation and state transitions. (A) The stable states resulting from perturbations applied to circuit components are depicted in A. The left-most figure represents the perturbations and the right-most one denotes the stable states, similar to the format used in Fig. 2. The asterisk (*) is employed to indicate that the corresponding component within a given model state can be activated or inactivated. (B) The combined loss (down arrow) and gain (up arrow) of function of the circuit components resulted in abrogated states and subsequent loss of multistability of the wild-type case. E, H, and M represent epithelial, hybrid, and mesenchymal states, respectively. (C) State transition graphs (STGs) depict the transition from the hybrid state for EWS/FLI1 fusion OFF and TGF-β OFF, with miR-145 (upper network) and miR-200 (lower network) capable of assuming all of their possible levels (OFF or ON). (D) Transitions from hybrid states (identified by activation or inactivation of SOX2 and OCT4) for EWS/FLI1 Fusion ON under identical conditions as in (C) for miR-200 (upper network) and miR-145 (lower network). Blue nodes represent transient states, and arrows represent transitions in which the state of the components is represented by plus (+) and minus (−) signs, respectively, denoting component activation or inactivation.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/1873-3468.14945","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/1873-3468.14945","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
This corrigendum has been published to correct errors identified by the authors after publication. These errors were introduced during the preparation of the figures and table. The authors sincerely apologize for any confusion that those minor errors in the original version of this article may have created and emphasize that these mistakes do not affect the conclusions of the article.
Fig. 3. Analysis of model perturbation and state transitions. (A) The stable states resulting from perturbations applied to circuit components are depicted in A. The left-most figure represents the perturbations and the right-most one denotes the stable states, similar to the format used in Fig. 2. The asterisk (*) is employed to indicate that the corresponding component within a given model state can be activated or inactivated. (B) The combined loss (down arrow) and gain (up arrow) of function of the circuit components resulted in abrogated states and subsequent loss of multistability of the wild-type case. E, H, and M represent epithelial, hybrid, and mesenchymal states, respectively. (C) State transition graphs (STGs) depict the transition from the hybrid state for EWS/FLI1 fusion OFF and TGF-β OFF, with miR-145 (upper network) and miR-200 (lower network) capable of assuming all of their possible levels (OFF or ON). (D) Transitions from hybrid states (identified by activation or inactivation of SOX2 and OCT4) for EWS/FLI1 Fusion ON under identical conditions as in (C) for miR-200 (upper network) and miR-145 (lower network). Blue nodes represent transient states, and arrows represent transitions in which the state of the components is represented by plus (+) and minus (−) signs, respectively, denoting component activation or inactivation.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.