Machine Learning-Guided Prediction of Desalination Capacity and Rate of Porous Carbons for Capacitive Deionization

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-06-17 DOI:10.1002/smll.202401214
Hao Wang, Mingxi Jiang, Guangsheng Xu, Chenglong Wang, Xingtao Xu, Yong Liu, Yuquan Li, Ting Lu, Guang Yang, Likun Pan
{"title":"Machine Learning-Guided Prediction of Desalination Capacity and Rate of Porous Carbons for Capacitive Deionization","authors":"Hao Wang,&nbsp;Mingxi Jiang,&nbsp;Guangsheng Xu,&nbsp;Chenglong Wang,&nbsp;Xingtao Xu,&nbsp;Yong Liu,&nbsp;Yuquan Li,&nbsp;Ting Lu,&nbsp;Guang Yang,&nbsp;Likun Pan","doi":"10.1002/smll.202401214","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, capacitive deionization (CDI) has emerged as a prominent technology in the desalination field, typically utilizing porous carbons as electrodes. However, the precise significance of electrode properties and operational conditions in shaping desalination performance remains blurry, necessitating numerous time-consuming and resource-intensive CDI experiments. Machine learning (ML) presents an emerging solution, offering the prospect of predicting CDI performance with minimal investment in electrode material synthesis and testing. Herein, four ML models are used for predicting the CDI performance of porous carbons. Among them, the gradient boosting model delivers the best performance on test set with low root mean square error values of 2.13 mg g<sup>−1</sup> and 0.073 mg g<sup>−1</sup> min<sup>−1</sup> for predicting desalination capacity and rate, respectively. Furthermore, SHapley Additive exPlanations is introduced to analyze the significance of electrode properties and operational conditions. It highlights that electrolyte concentration and specific surface area exert a substantially more influential role in determining desalination performance compared to other features. Ultimately, experimental validation employing metal–organic frameworks-derived porous carbons and biomass-derived porous carbons as CDI electrodes is conducted to affirm the prediction accuracy of ML models. This study pioneers ML techniques for predicting CDI performance, offering a compelling strategy for advancing CDI technology.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 42","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202401214","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, capacitive deionization (CDI) has emerged as a prominent technology in the desalination field, typically utilizing porous carbons as electrodes. However, the precise significance of electrode properties and operational conditions in shaping desalination performance remains blurry, necessitating numerous time-consuming and resource-intensive CDI experiments. Machine learning (ML) presents an emerging solution, offering the prospect of predicting CDI performance with minimal investment in electrode material synthesis and testing. Herein, four ML models are used for predicting the CDI performance of porous carbons. Among them, the gradient boosting model delivers the best performance on test set with low root mean square error values of 2.13 mg g−1 and 0.073 mg g−1 min−1 for predicting desalination capacity and rate, respectively. Furthermore, SHapley Additive exPlanations is introduced to analyze the significance of electrode properties and operational conditions. It highlights that electrolyte concentration and specific surface area exert a substantially more influential role in determining desalination performance compared to other features. Ultimately, experimental validation employing metal–organic frameworks-derived porous carbons and biomass-derived porous carbons as CDI electrodes is conducted to affirm the prediction accuracy of ML models. This study pioneers ML techniques for predicting CDI performance, offering a compelling strategy for advancing CDI technology.

Abstract Image

Abstract Image

机器学习指导下的电容式去离子多孔碳脱盐能力和脱盐率预测。
如今,电容式去离子(CDI)已成为海水淡化领域的一项重要技术,通常利用多孔碳作为电极。然而,电极特性和操作条件在影响海水淡化性能方面的确切意义仍然模糊不清,这就需要进行大量耗时耗力的 CDI 实验。机器学习(ML)是一种新兴的解决方案,有望以最小的电极材料合成和测试投资预测 CDI 性能。本文使用了四种 ML 模型来预测多孔碳的 CDI 性能。其中,梯度提升模型在测试集上性能最佳,预测脱盐能力和脱盐率的均方根误差值分别为 2.13 mg g-1 和 0.073 mg g-1 min-1。此外,还引入了 SHapley Additive exPlanations 来分析电极特性和操作条件的重要性。结果表明,与其他特性相比,电解质浓度和比表面积对脱盐性能的影响更大。最后,采用金属有机框架衍生多孔碳和生物质衍生多孔碳作为 CDI 电极进行了实验验证,以确认 ML 模型的预测准确性。这项研究开创了用于预测 CDI 性能的 ML 技术,为推动 CDI 技术的发展提供了一个令人信服的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信