Inversion of Sea Surface Currents From Satellite-Derived SST-SSH Synergies With 4DVarNets

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
R. Fablet, B. Chapron, J. Le Sommer, F. Sévellec
{"title":"Inversion of Sea Surface Currents From Satellite-Derived SST-SSH Synergies With 4DVarNets","authors":"R. Fablet,&nbsp;B. Chapron,&nbsp;J. Le Sommer,&nbsp;F. Sévellec","doi":"10.1029/2023MS003609","DOIUrl":null,"url":null,"abstract":"<p>Satellite altimetry offers a unique approach for direct sea surface current observation, but it is limited to measuring the surface-constrained geostrophic component. Ageostrophic dynamics, prevalent at horizontal scales below 100 km and time scales below 10 days, are often underestimated by ocean reanalyzes employing data assimilation schemes. To address this limitation, we introduce a novel deep learning scheme, rooted in a variational data assimilation formulation with trainable observations and a priori terms, that harnesses the synergies between satellite-derived sea surface observations, namely sea surface height (SSH) and sea surface temperature (SST), to enhance sea surface current reconstruction. Numerical experiments, conducted using realistic simulations, in a case study area of the Gulf Stream, demonstrate the potential of the proposed scheme to capture ageostrophic dynamics at time scales of 2.5–3.0 days and horizontal scales of 0.5°–0.7°. The analysis of diverse observation configurations, encompassing nadir along-track altimetry, wide-swath SWOT (Surface Water and Ocean Topography) altimetry, and SST data, highlights the pivotal role of SST features in retrieving a significant portion of the ageostrophic dynamics (approximately 47%). These findings underscore the potential of deep learning and 4DVarNet schemes in improving ocean reanalyzes and enhancing our understanding of ocean dynamics.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003609","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS003609","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite altimetry offers a unique approach for direct sea surface current observation, but it is limited to measuring the surface-constrained geostrophic component. Ageostrophic dynamics, prevalent at horizontal scales below 100 km and time scales below 10 days, are often underestimated by ocean reanalyzes employing data assimilation schemes. To address this limitation, we introduce a novel deep learning scheme, rooted in a variational data assimilation formulation with trainable observations and a priori terms, that harnesses the synergies between satellite-derived sea surface observations, namely sea surface height (SSH) and sea surface temperature (SST), to enhance sea surface current reconstruction. Numerical experiments, conducted using realistic simulations, in a case study area of the Gulf Stream, demonstrate the potential of the proposed scheme to capture ageostrophic dynamics at time scales of 2.5–3.0 days and horizontal scales of 0.5°–0.7°. The analysis of diverse observation configurations, encompassing nadir along-track altimetry, wide-swath SWOT (Surface Water and Ocean Topography) altimetry, and SST data, highlights the pivotal role of SST features in retrieving a significant portion of the ageostrophic dynamics (approximately 47%). These findings underscore the potential of deep learning and 4DVarNet schemes in improving ocean reanalyzes and enhancing our understanding of ocean dynamics.

Abstract Image

利用卫星获取的 SST-SSH 与 4DVarNets 的协同作用反演海面洋流
卫星测高法为直接观测海面洋流提供了一种独特的方法,但它仅限于测量受海面约束的地营成分。在 100 公里以下水平尺度和 10 天以下时间尺度上普遍存在的地转营养动力学常常被采用数据同化方案的海洋再分析所低估。为了解决这一局限性,我们引入了一种新的深度学习方案,该方案植根于可训练观测数据和先验项的变分数据同化公式,利用卫星海面观测数据(即海面高度(SSH)和海面温度(SST))之间的协同作用来加强海面洋流重建。在墨西哥湾流案例研究区进行的实际模拟数值实验表明,所提出的方案有潜力捕捉时间尺度为 2.5-3.0 天、水平尺度为 0.5-0.7 度的老化动态。对不同观测配置(包括天底沿轨测高、宽波长 SWOT(地表水和海洋地形)测高和 SST 数据)的分析突出表明,SST 特征在检索很大一部分(约 47%)老养动态方面起着关键作用。这些发现强调了深度学习和 4DVarNet 方案在改进海洋再分析和加强我们对海洋动力学的理解方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信