Hao Liu , Fei Xing , Peiyun Yu , Man Zhe , Sujan Shakya , Ming Liu , Zhou Xiang , Xin Duan , Ulrike Ritz
{"title":"Multifunctional aerogel: A unique and advanced biomaterial for tissue regeneration and repair","authors":"Hao Liu , Fei Xing , Peiyun Yu , Man Zhe , Sujan Shakya , Ming Liu , Zhou Xiang , Xin Duan , Ulrike Ritz","doi":"10.1016/j.matdes.2024.113091","DOIUrl":null,"url":null,"abstract":"<div><p>Amidst the rapid advancements in materials science, the exploration of aerogel-based biomaterials has garnered extensive attention across diverse sectors, including biomedicine, energy, architecture, and sensing. Comprehensive studies have unveiled the utilization of organic, inorganic, and hybridized materials for aerogel preparation, catapulting aerogel-based biomaterials to global prominence. Endowed with distinctive properties, including low density, a hierarchical porous network, high porosity, and nanoscale micropores, aerogels have exhibited a broad spectrum of applications, particularly in the realm of tissue engineering. The deployment of aerogel-based biomaterials in tissue engineering is in a dynamic phase of development, with available reports indicating varying degrees of exploration in fields such as blood vessels, soft tissues, nerves, skin, muscles, heart, bronchial tubes, bone, and cartilage—an evolutionary process. This paper offers a comprehensive review of the evolution of aerogel properties and preparation processes, encapsulating strategic insights for the application of aerogel-based biomaterials in tissue engineering. It succinctly summarizes recent developments in tissue engineering research, emphasizing their significance. Additionally, the review outlines future prospects for the application of aerogels in tissue engineering and envisions challenges arising from current studies. Through this thorough exploration of aerogel-based biomaterials in tissue engineering, the paper aspires to make a profound impact on regenerative medicine, offering innovative and effective application strategies for biomedicine.</p></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0264127524004659/pdfft?md5=66049d58943acec66e48dc752ddeb722&pid=1-s2.0-S0264127524004659-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524004659","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Amidst the rapid advancements in materials science, the exploration of aerogel-based biomaterials has garnered extensive attention across diverse sectors, including biomedicine, energy, architecture, and sensing. Comprehensive studies have unveiled the utilization of organic, inorganic, and hybridized materials for aerogel preparation, catapulting aerogel-based biomaterials to global prominence. Endowed with distinctive properties, including low density, a hierarchical porous network, high porosity, and nanoscale micropores, aerogels have exhibited a broad spectrum of applications, particularly in the realm of tissue engineering. The deployment of aerogel-based biomaterials in tissue engineering is in a dynamic phase of development, with available reports indicating varying degrees of exploration in fields such as blood vessels, soft tissues, nerves, skin, muscles, heart, bronchial tubes, bone, and cartilage—an evolutionary process. This paper offers a comprehensive review of the evolution of aerogel properties and preparation processes, encapsulating strategic insights for the application of aerogel-based biomaterials in tissue engineering. It succinctly summarizes recent developments in tissue engineering research, emphasizing their significance. Additionally, the review outlines future prospects for the application of aerogels in tissue engineering and envisions challenges arising from current studies. Through this thorough exploration of aerogel-based biomaterials in tissue engineering, the paper aspires to make a profound impact on regenerative medicine, offering innovative and effective application strategies for biomedicine.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.