{"title":"Vine-copula-based multi-dimensional fragility analysis of nuclear power plant under sequential earthquakes","authors":"Meng-Ze Lyu , Zi-Jian Fei , De-Cheng Feng","doi":"10.1016/j.strusafe.2024.102494","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic resilience of critical infrastructure, such as nuclear power plants, is paramount in ensuring nuclear safety. This study presents a comprehensive analysis of the seismic fragility of nuclear power plants under sequential earthquakes, employing the innovative vine-copula theory. The methodology integrates advanced modeling techniques, including layered shell elements and plastic damage softening constitutive modeling, to capture the intricate behavior of nuclear power plants under seismic loading. The seismic sequence is derived from the Wenchuan earthquake data, considering both mainshocks and aftershocks. A set of random seismic peak ground accelerations (PGAs) is generated based on the distribution of giant earthquake PGAs. Utilizing seismic attenuation theory, corresponding random aftershock PGAs are generated. The resulting mainshock-aftershock sequence, modulated within the real seismic sequence, serves as the input for numerical simulations. The vine-copula theory is employed for multi-dimensional fragility analysis, providing a flexible framework to model the complex nonlinear dependencies among structural response parameters. The vine-copula model is applied to fit seismic response data, allowing the construction of fragility surfaces under sequential earthquakes. This approach, rooted in performance-based earthquake engineering (PBEE), enables a more realistic representation of the seismic risk profile. The findings demonstrate that seismic fragility trends for nuclear power plants increase with higher mainshock and aftershock intensity measures (IMs). The impact of aftershocks on the structural performance, often overlooked in traditional studies, is elucidated through the proposed methodology. The study contributes valuable insights into nuclear safety assessments by quantifying the influence of sequential earthquakes on the fragility of nuclear power plants.</p></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"110 ","pages":"Article 102494"},"PeriodicalIF":5.7000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473024000651","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Seismic resilience of critical infrastructure, such as nuclear power plants, is paramount in ensuring nuclear safety. This study presents a comprehensive analysis of the seismic fragility of nuclear power plants under sequential earthquakes, employing the innovative vine-copula theory. The methodology integrates advanced modeling techniques, including layered shell elements and plastic damage softening constitutive modeling, to capture the intricate behavior of nuclear power plants under seismic loading. The seismic sequence is derived from the Wenchuan earthquake data, considering both mainshocks and aftershocks. A set of random seismic peak ground accelerations (PGAs) is generated based on the distribution of giant earthquake PGAs. Utilizing seismic attenuation theory, corresponding random aftershock PGAs are generated. The resulting mainshock-aftershock sequence, modulated within the real seismic sequence, serves as the input for numerical simulations. The vine-copula theory is employed for multi-dimensional fragility analysis, providing a flexible framework to model the complex nonlinear dependencies among structural response parameters. The vine-copula model is applied to fit seismic response data, allowing the construction of fragility surfaces under sequential earthquakes. This approach, rooted in performance-based earthquake engineering (PBEE), enables a more realistic representation of the seismic risk profile. The findings demonstrate that seismic fragility trends for nuclear power plants increase with higher mainshock and aftershock intensity measures (IMs). The impact of aftershocks on the structural performance, often overlooked in traditional studies, is elucidated through the proposed methodology. The study contributes valuable insights into nuclear safety assessments by quantifying the influence of sequential earthquakes on the fragility of nuclear power plants.
期刊介绍:
Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment