Dynamics of simplicial SEIRS epidemic model: global asymptotic stability and neural Lyapunov functions.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yukun Zou, Xiaoxiao Peng, Wei Yang, Jingdong Zhang, Wei Lin
{"title":"Dynamics of simplicial SEIRS epidemic model: global asymptotic stability and neural Lyapunov functions.","authors":"Yukun Zou, Xiaoxiao Peng, Wei Yang, Jingdong Zhang, Wei Lin","doi":"10.1007/s00285-024-02119-3","DOIUrl":null,"url":null,"abstract":"<p><p>The transmission of infectious diseases on a particular network is ubiquitous in the physical world. Here, we investigate the transmission mechanism of infectious diseases with an incubation period using a networked compartment model that contains simplicial interactions, a typical high-order structure. We establish a simplicial SEIRS model and find that the proportion of infected individuals in equilibrium increases due to the many-body connections, regardless of the type of connections used. We analyze the dynamics of the established model, including existence and local asymptotic stability, and highlight differences from existing models. Significantly, we demonstrate global asymptotic stability using the neural Lyapunov function, a machine learning technique, with both numerical simulations and rigorous analytical arguments. We believe that our model owns the potential to provide valuable insights into transmission mechanisms of infectious diseases on high-order network structures, and that our approach and theory of using neural Lyapunov functions to validate model asymptotic stability can significantly advance investigations on complex dynamics of infectious disease.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02119-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The transmission of infectious diseases on a particular network is ubiquitous in the physical world. Here, we investigate the transmission mechanism of infectious diseases with an incubation period using a networked compartment model that contains simplicial interactions, a typical high-order structure. We establish a simplicial SEIRS model and find that the proportion of infected individuals in equilibrium increases due to the many-body connections, regardless of the type of connections used. We analyze the dynamics of the established model, including existence and local asymptotic stability, and highlight differences from existing models. Significantly, we demonstrate global asymptotic stability using the neural Lyapunov function, a machine learning technique, with both numerical simulations and rigorous analytical arguments. We believe that our model owns the potential to provide valuable insights into transmission mechanisms of infectious diseases on high-order network structures, and that our approach and theory of using neural Lyapunov functions to validate model asymptotic stability can significantly advance investigations on complex dynamics of infectious disease.

Abstract Image

简约 SEIRS 流行模型的动力学:全局渐近稳定性和神经 Lyapunov 函数。
传染病在特定网络中的传播在物理世界中无处不在。在这里,我们利用一个包含简单相互作用(一种典型的高阶结构)的网络隔室模型,研究了有潜伏期的传染病的传播机制。我们建立了一个简单的 SEIRS 模型,并发现无论使用哪种连接方式,平衡状态下受感染个体的比例都会因多体连接而增加。我们分析了所建模型的动力学,包括存在性和局部渐近稳定性,并强调了与现有模型的不同之处。重要的是,我们利用神经 Lyapunov 函数(一种机器学习技术),通过数值模拟和严格的分析论证,证明了全局渐近稳定性。我们相信,我们的模型有可能为研究传染病在高阶网络结构上的传播机制提供有价值的见解,而我们利用神经李亚普诺夫函数验证模型渐近稳定性的方法和理论可以极大地推动对传染病复杂动力学的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信