Bradyn N. Swanson, Sydney A. Lewis, Amarpreet Kaur, Jennifer N. Berry
{"title":"Escalating caffeine dose-dependently increases alcohol consumption in adult male, but not female, C57BL/6J mice","authors":"Bradyn N. Swanson, Sydney A. Lewis, Amarpreet Kaur, Jennifer N. Berry","doi":"10.1016/j.pbb.2024.173806","DOIUrl":null,"url":null,"abstract":"<div><p>Although previous research has illustrated the effects of the consumption of alcohol and caffeine individually, less research has focused on the popular combination of the two drugs. The increase in alcohol consumption when combined with caffeine has led to the idea that the stimulant effects of caffeine may mask the depressant effects of alcohol, and this may contribute to increased binge drinking as the individual feels more awake and stimulated. Preclinical research has shown various effects of combined alcohol and caffeine where several studies show decreased alcohol consumption and others show increased alcohol consumption and even binge-like drinking. Results from a previous study in our lab indicate that intermittent access (IA) to steady levels of low (0.015 %) but not moderate (0.03 %) caffeine increased alcohol consumption in male C57BL/6J mice. The current studies further investigated the sex and dose differences in adult mice receiving varying concentrations of caffeine on combined alcohol intake. In Experiment 1, adult mice (<em>n</em> = 50, 25 males and 25 females) had IA to one of the following experimental bottles throughout the 4 week period: water, alcohol (10 % <em>v</em>/v), caffeine (0.015 % <em>w</em>/<em>v</em>), or 10 % alcohol +0.015 % caffeine. In Experiment 2, adult mice (<em>n</em> = 70, 35 males and 35 females) were given IA to one of the following experimental bottles: water, alcohol (10 % <em>v</em>/v; steady, maintained throughout the 4 weeks), caffeine (increasing 0.01 % to 0.015 % to 0.02 % to 0.03 % weekly), or 10 % alcohol+increasing caffeine (at the previously mentioned concentrations). When both caffeine and alcohol concentrations remained steady throughout the 4 weeks, there was no change in alcohol consumption. Chronic exposure to IA caffeine led to increased locomotor activity and decreased freezing episodes when tested in the open field test approximately 6 h after removal of the bottles. In Experiment 2, caffeine dose-dependently increased alcohol co-consumption in male mice whereas female mice consumed less alcohol when it was presented in conjunction with caffeine. The results in males are in line with clinical literature suggesting that the combination of alcohol and caffeine may lead to increased stimulation and alcohol drinking. Additionally, these studies provide evidence that the escalation of caffeine is crucial when investigating alcohol and caffeine co-consumption using the IA paradigm.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"241 ","pages":"Article 173806"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009130572400100X","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Although previous research has illustrated the effects of the consumption of alcohol and caffeine individually, less research has focused on the popular combination of the two drugs. The increase in alcohol consumption when combined with caffeine has led to the idea that the stimulant effects of caffeine may mask the depressant effects of alcohol, and this may contribute to increased binge drinking as the individual feels more awake and stimulated. Preclinical research has shown various effects of combined alcohol and caffeine where several studies show decreased alcohol consumption and others show increased alcohol consumption and even binge-like drinking. Results from a previous study in our lab indicate that intermittent access (IA) to steady levels of low (0.015 %) but not moderate (0.03 %) caffeine increased alcohol consumption in male C57BL/6J mice. The current studies further investigated the sex and dose differences in adult mice receiving varying concentrations of caffeine on combined alcohol intake. In Experiment 1, adult mice (n = 50, 25 males and 25 females) had IA to one of the following experimental bottles throughout the 4 week period: water, alcohol (10 % v/v), caffeine (0.015 % w/v), or 10 % alcohol +0.015 % caffeine. In Experiment 2, adult mice (n = 70, 35 males and 35 females) were given IA to one of the following experimental bottles: water, alcohol (10 % v/v; steady, maintained throughout the 4 weeks), caffeine (increasing 0.01 % to 0.015 % to 0.02 % to 0.03 % weekly), or 10 % alcohol+increasing caffeine (at the previously mentioned concentrations). When both caffeine and alcohol concentrations remained steady throughout the 4 weeks, there was no change in alcohol consumption. Chronic exposure to IA caffeine led to increased locomotor activity and decreased freezing episodes when tested in the open field test approximately 6 h after removal of the bottles. In Experiment 2, caffeine dose-dependently increased alcohol co-consumption in male mice whereas female mice consumed less alcohol when it was presented in conjunction with caffeine. The results in males are in line with clinical literature suggesting that the combination of alcohol and caffeine may lead to increased stimulation and alcohol drinking. Additionally, these studies provide evidence that the escalation of caffeine is crucial when investigating alcohol and caffeine co-consumption using the IA paradigm.
期刊介绍:
Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.