Asim Dhungana, Augustin Vannier, Fangyuan Zhao, Jincong Q Freeman, Poornima Saha, Megan Sullivan, Katharine Yao, Elbio M Flores, Olufunmilayo I Olopade, Alexander T Pearson, Dezheng Huo, Frederick M Howard
{"title":"Development and validation of a clinical breast cancer tool for accurate prediction of recurrence.","authors":"Asim Dhungana, Augustin Vannier, Fangyuan Zhao, Jincong Q Freeman, Poornima Saha, Megan Sullivan, Katharine Yao, Elbio M Flores, Olufunmilayo I Olopade, Alexander T Pearson, Dezheng Huo, Frederick M Howard","doi":"10.1038/s41523-024-00651-5","DOIUrl":null,"url":null,"abstract":"<p><p>Given high costs of Oncotype DX (ODX) testing, widely used in recurrence risk assessment for early-stage breast cancer, studies have predicted ODX using quantitative clinicopathologic variables. However, such models have incorporated only small cohorts. Using a cohort of patients from the National Cancer Database (NCDB, n = 53,346), we trained machine learning models to predict low-risk (0-25) or high-risk (26-100) ODX using quantitative estrogen receptor (ER)/progesterone receptor (PR)/Ki-67 status, quantitative ER/PR status alone, and no quantitative features. Models were externally validated on a diverse cohort of 970 patients (median follow-up 55 months) for accuracy in ODX prediction and recurrence. Comparing the area under the receiver operating characteristic curve (AUROC) in a held-out set from NCDB, models incorporating quantitative ER/PR (AUROC 0.78, 95% CI 0.77-0.80) and ER/PR/Ki-67 (AUROC 0.81, 95% CI 0.80-0.83) outperformed the non-quantitative model (AUROC 0.70, 95% CI 0.68-0.72). These results were preserved in the validation cohort, where the ER/PR/Ki-67 model (AUROC 0.87, 95% CI 0.81-0.93, p = 0.009) and the ER/PR model (AUROC 0.86, 95% CI 0.80-0.92, p = 0.031) significantly outperformed the non-quantitative model (AUROC 0.80, 95% CI 0.73-0.87). Using a high-sensitivity rule-out threshold, the non-quantitative, quantitative ER/PR and ER/PR/Ki-67 models identified 35%, 30% and 43% of patients as low-risk in the validation cohort. Of these low-risk patients, fewer than 3% had a recurrence at 5 years. These models may help identify patients who can forgo genomic testing and initiate endocrine therapy alone. An online calculator is provided for further study.</p>","PeriodicalId":19247,"journal":{"name":"NPJ Breast Cancer","volume":"10 1","pages":"46"},"PeriodicalIF":6.5000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180107/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Breast Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41523-024-00651-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Given high costs of Oncotype DX (ODX) testing, widely used in recurrence risk assessment for early-stage breast cancer, studies have predicted ODX using quantitative clinicopathologic variables. However, such models have incorporated only small cohorts. Using a cohort of patients from the National Cancer Database (NCDB, n = 53,346), we trained machine learning models to predict low-risk (0-25) or high-risk (26-100) ODX using quantitative estrogen receptor (ER)/progesterone receptor (PR)/Ki-67 status, quantitative ER/PR status alone, and no quantitative features. Models were externally validated on a diverse cohort of 970 patients (median follow-up 55 months) for accuracy in ODX prediction and recurrence. Comparing the area under the receiver operating characteristic curve (AUROC) in a held-out set from NCDB, models incorporating quantitative ER/PR (AUROC 0.78, 95% CI 0.77-0.80) and ER/PR/Ki-67 (AUROC 0.81, 95% CI 0.80-0.83) outperformed the non-quantitative model (AUROC 0.70, 95% CI 0.68-0.72). These results were preserved in the validation cohort, where the ER/PR/Ki-67 model (AUROC 0.87, 95% CI 0.81-0.93, p = 0.009) and the ER/PR model (AUROC 0.86, 95% CI 0.80-0.92, p = 0.031) significantly outperformed the non-quantitative model (AUROC 0.80, 95% CI 0.73-0.87). Using a high-sensitivity rule-out threshold, the non-quantitative, quantitative ER/PR and ER/PR/Ki-67 models identified 35%, 30% and 43% of patients as low-risk in the validation cohort. Of these low-risk patients, fewer than 3% had a recurrence at 5 years. These models may help identify patients who can forgo genomic testing and initiate endocrine therapy alone. An online calculator is provided for further study.
期刊介绍:
npj Breast Cancer publishes original research articles, reviews, brief correspondence, meeting reports, editorial summaries and hypothesis generating observations which could be unexplained or preliminary findings from experiments, novel ideas, or the framing of new questions that need to be solved. Featured topics of the journal include imaging, immunotherapy, molecular classification of disease, mechanism-based therapies largely targeting signal transduction pathways, carcinogenesis including hereditary susceptibility and molecular epidemiology, survivorship issues including long-term toxicities of treatment and secondary neoplasm occurrence, the biophysics of cancer, mechanisms of metastasis and their perturbation, and studies of the tumor microenvironment.