Data analysis and estimation of the conversion efficiency of bidirectional EV chargers using home energy management systems data

IF 5.4 Q2 ENERGY & FUELS
Yumiko Iwafune, Toshiaki Kawai
{"title":"Data analysis and estimation of the conversion efficiency of bidirectional EV chargers using home energy management systems data","authors":"Yumiko Iwafune,&nbsp;Toshiaki Kawai","doi":"10.1016/j.segy.2024.100145","DOIUrl":null,"url":null,"abstract":"<div><p>This study elucidates the authentic utilization of Vehicle-to-Home (V2H) system, a bi-directional DC charger for residential use and appraises power conversion losses incurred during V2H charging and discharging, utilizing data from commercial Home Energy Management Systems (HEMS). This approach offers the advantage of ascertaining operational efficiency within practical scenarios at a reduced cost relative to empirical data acquisition.</p><p>The empirical examination of results revealed that V2H households exhibited more frequent connections to the charger and engaged in more substantial charging activities compared to Charging-only households.</p><p>When estimating the power conversion efficiency in the context of V2H charging and discharging, a partial load efficiency curve was constructed for the input power of the V2H charger, thereby confirming that the peak efficiency closely approximated the nominal rated efficiency. These identified characteristics hold value for V2H system simulations. Furthermore, it was confirmed that a substantial standby power, ranging from 92 to 142 kWh per year, was generated when the V2H charger remained inactive in the sampled households. Additionally, the lack of reverse power flow to the external grid from the V2H system led to an observed increase in V2H partial load operation, resulting in a situation characterized by diminished conversion efficiency.</p></div>","PeriodicalId":34738,"journal":{"name":"Smart Energy","volume":"15 ","pages":"Article 100145"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666955224000157/pdfft?md5=82390c0545c91423a33d9116d8757b7c&pid=1-s2.0-S2666955224000157-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666955224000157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study elucidates the authentic utilization of Vehicle-to-Home (V2H) system, a bi-directional DC charger for residential use and appraises power conversion losses incurred during V2H charging and discharging, utilizing data from commercial Home Energy Management Systems (HEMS). This approach offers the advantage of ascertaining operational efficiency within practical scenarios at a reduced cost relative to empirical data acquisition.

The empirical examination of results revealed that V2H households exhibited more frequent connections to the charger and engaged in more substantial charging activities compared to Charging-only households.

When estimating the power conversion efficiency in the context of V2H charging and discharging, a partial load efficiency curve was constructed for the input power of the V2H charger, thereby confirming that the peak efficiency closely approximated the nominal rated efficiency. These identified characteristics hold value for V2H system simulations. Furthermore, it was confirmed that a substantial standby power, ranging from 92 to 142 kWh per year, was generated when the V2H charger remained inactive in the sampled households. Additionally, the lack of reverse power flow to the external grid from the V2H system led to an observed increase in V2H partial load operation, resulting in a situation characterized by diminished conversion efficiency.

利用家庭能源管理系统数据分析和估算双向电动汽车充电器的转换效率
本研究利用商用家庭能源管理系统(HEMS)的数据,阐明了住宅用双向直流充电器--车辆到家庭(V2H)系统的真实使用情况,并评估了 V2H 充放电过程中产生的电力转换损耗。在估算 V2H 充放电过程中的电力转换效率时,为 V2H 充电器的输入功率构建了部分负载效率曲线,从而确认峰值效率非常接近额定效率。这些确定的特征对于 V2H 系统模拟具有价值。此外,经证实,在取样家庭中,当 V2H 充电器处于不活动状态时,每年会产生大量待机电量,从 92 千瓦时到 142 千瓦时不等。此外,由于缺乏从 V2H 系统流向外部电网的反向电力流,因此观察到 V2H 部分负载运行增加,导致转换效率降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Energy
Smart Energy Engineering-Mechanical Engineering
CiteScore
9.20
自引率
0.00%
发文量
29
审稿时长
73 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信