Machine learning insight into inhibition efficiency modelling based on modified graphene oxide of diaminohexane (DAH-GO) and diaminooctane (DAO-GO)

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kabiru Haruna , Sani I. Abba , Jamil Usman , A.G. Usman , Abdulrahman Musa , Tawfik A. Saleh , Isam H. Aljundi
{"title":"Machine learning insight into inhibition efficiency modelling based on modified graphene oxide of diaminohexane (DAH-GO) and diaminooctane (DAO-GO)","authors":"Kabiru Haruna ,&nbsp;Sani I. Abba ,&nbsp;Jamil Usman ,&nbsp;A.G. Usman ,&nbsp;Abdulrahman Musa ,&nbsp;Tawfik A. Saleh ,&nbsp;Isam H. Aljundi","doi":"10.1016/j.cartre.2024.100373","DOIUrl":null,"url":null,"abstract":"<div><p>The effective prediction of corrosion inhibition efficiency (%IE) of modified graphene oxides (GOs); diaminohexane-modified graphene oxide (DAH-GO) and diaminooctane-modified graphene oxide (DAO-GO) is vital for advanced material applications. This study employs a dual-modelling scheme to predict the %IE, for this purpose, four stand-alone machine learning (ML) models (Multivariate Regression (MVR), Gaussian Process Regression (GPR), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Neural Network (NN)), and five simple averaging (SA) ensemble paradigms (MVR-SA, GPR-SA, ANFIS-SA, NN-SA, and Decision Tree-SA (DT-SA)). Feature selection processes were carried out to develop three distinct models, leading to a comprehensive comparative analysis. The results demonstrated that the non-linear stand-alone models (GPR, ANFIS, NN) significantly outperform the linear MVR model, with the M2 model configuration yielding the highest performance across all models. Remarkably, GPR-M2 achieved perfect model tuning with zero error rates, indicating its superior predictive capabilities. Ensemble techniques further improved performance, reflecting the experimental data's complexities in %IE modelling. The hierarchical order of performance in the training phase in the testing phase is DT-SA &lt; MVR-SA &lt; ANFIS-SA &lt; NN-SA &lt; GPR-SA. The GPR-SA ensemble emerged as the most accurate technique, substantially enhancing the predictive accuracy of the ensemble models by up to 67.73% in the training phase and 50.71% in the testing phase. These findings suggest the potential of GPR-SA in boosting the performance of ensemble approaches in material science applications. The study recommended a promising future for ML in the development and application of corrosion-inhibitors.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"16 ","pages":"Article 100373"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000543/pdfft?md5=a20d8003d5b921de8be788888ef22dda&pid=1-s2.0-S2667056924000543-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The effective prediction of corrosion inhibition efficiency (%IE) of modified graphene oxides (GOs); diaminohexane-modified graphene oxide (DAH-GO) and diaminooctane-modified graphene oxide (DAO-GO) is vital for advanced material applications. This study employs a dual-modelling scheme to predict the %IE, for this purpose, four stand-alone machine learning (ML) models (Multivariate Regression (MVR), Gaussian Process Regression (GPR), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Neural Network (NN)), and five simple averaging (SA) ensemble paradigms (MVR-SA, GPR-SA, ANFIS-SA, NN-SA, and Decision Tree-SA (DT-SA)). Feature selection processes were carried out to develop three distinct models, leading to a comprehensive comparative analysis. The results demonstrated that the non-linear stand-alone models (GPR, ANFIS, NN) significantly outperform the linear MVR model, with the M2 model configuration yielding the highest performance across all models. Remarkably, GPR-M2 achieved perfect model tuning with zero error rates, indicating its superior predictive capabilities. Ensemble techniques further improved performance, reflecting the experimental data's complexities in %IE modelling. The hierarchical order of performance in the training phase in the testing phase is DT-SA < MVR-SA < ANFIS-SA < NN-SA < GPR-SA. The GPR-SA ensemble emerged as the most accurate technique, substantially enhancing the predictive accuracy of the ensemble models by up to 67.73% in the training phase and 50.71% in the testing phase. These findings suggest the potential of GPR-SA in boosting the performance of ensemble approaches in material science applications. The study recommended a promising future for ML in the development and application of corrosion-inhibitors.

Abstract Image

基于二氨基己烷(DAH-GO)和二氨基辛烷(DAO-GO)的改性氧化石墨烯的机器学习对抑制效率建模的启示
有效预测改性石墨烯氧化物(GOs)、二氨基己烷改性氧化石墨烯(DAH-GO)和二氨基辛烷改性氧化石墨烯(DAO-GO)的缓蚀效率(%IE)对于先进材料的应用至关重要。本研究采用了双重建模方案来预测 IE%,为此采用了四种独立的机器学习(ML)模型(多元回归(MVR)、高斯过程回归(GPR)、自适应神经模糊推理系统(ANFIS)和神经网络(NN))以及五种简单平均(SA)集合范例(MVR-SA、GPR-SA、ANFIS-SA、NN-SA 和决策树-SA(DT-SA))。通过特征选择过程开发了三种不同的模型,从而进行了全面的比较分析。结果表明,非线性独立模型(GPR、ANFIS、NN)明显优于线性 MVR 模型,其中 M2 模型配置在所有模型中性能最高。值得注意的是,GPR-M2 实现了完美的模型调整,错误率为零,这表明它具有卓越的预测能力。集合技术进一步提高了性能,反映了 %IE 建模中实验数据的复杂性。在测试阶段,训练阶段的性能等级顺序为 DT-SA < MVR-SA < ANFIS-SA < NN-SA < GPR-SA。GPR-SA 组合是最准确的技术,在训练阶段大大提高了组合模型的预测准确性,高达 67.73%,在测试阶段提高了 50.71%。这些发现表明,GPR-SA 在提高材料科学应用中的集合方法性能方面具有潜力。该研究为 ML 在腐蚀抑制剂的开发和应用中的发展前景提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信