{"title":"Dispersive behavior of SH waves in a smart composite structure of viscoelastic media","authors":"Mohd Sadab, Santimoy Kundu","doi":"10.1016/j.wavemoti.2024.103355","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the dispersive behavior of SH waves in a piezoelectric viscoelastic (PV) layer sandwiched between a magnetoelastic fiber-reinforced viscoelastic (MFRV) layer and a heterogeneous viscoelastic half-space. The linear variation of the downward-pointing space variable introduces inhomogeneity in the viscoelastic half-space. With the help of the variable separation technique, the governing equations of the present model are solved to obtain solutions for the mechanical displacement and electric potential function. A complex frequency equation for the SH waves has been derived by applying appropriate boundary conditions. The results are confirmed by comparison to the classical case of Love wave, and special cases of the problem are also discussed. In the fundamental analytical study, two cases of the PV layer are discussed, and the effects of physical parameters on the phase and damped velocity of SH waves are investigated through numerical calculations and presented graphically. A comparative study has also been carried out to analyze the effects of the viscoelastic parameters, reinforcement parameters, thickness ratio parameter, magnetoelastic coupling parameter, inhomogeneity parameter, and the angle at which the wave intersects the magnetic field on the phase and damped velocity by taking electrically open and short conditions.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524000854","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the dispersive behavior of SH waves in a piezoelectric viscoelastic (PV) layer sandwiched between a magnetoelastic fiber-reinforced viscoelastic (MFRV) layer and a heterogeneous viscoelastic half-space. The linear variation of the downward-pointing space variable introduces inhomogeneity in the viscoelastic half-space. With the help of the variable separation technique, the governing equations of the present model are solved to obtain solutions for the mechanical displacement and electric potential function. A complex frequency equation for the SH waves has been derived by applying appropriate boundary conditions. The results are confirmed by comparison to the classical case of Love wave, and special cases of the problem are also discussed. In the fundamental analytical study, two cases of the PV layer are discussed, and the effects of physical parameters on the phase and damped velocity of SH waves are investigated through numerical calculations and presented graphically. A comparative study has also been carried out to analyze the effects of the viscoelastic parameters, reinforcement parameters, thickness ratio parameter, magnetoelastic coupling parameter, inhomogeneity parameter, and the angle at which the wave intersects the magnetic field on the phase and damped velocity by taking electrically open and short conditions.
本研究的重点是介于磁弹性纤维增强粘弹性层(MFRV)和异质粘弹性半空间之间的压电粘弹性层(PV)中 SH 波的色散行为。向下空间变量的线性变化在粘弹性半空间中引入了不均匀性。在变量分离技术的帮助下,求解了本模型的控制方程,从而得到了机械位移和电动势函数的解。通过应用适当的边界条件,得出了 SH 波的复频方程。通过与经典的洛夫波对比,确认了结果,并讨论了问题的特殊情况。在基本分析研究中,讨论了 PV 层的两种情况,通过数值计算研究了物理参数对 SH 波的相位和阻尼速度的影响,并以图表形式呈现。此外,还进行了对比研究,分析了粘弹性参数、加固参数、厚度比参数、磁弹性耦合参数、不均匀性参数以及波与磁场相交的角度对相位和阻尼速度的影响。
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.