Wai Kong , Ching-chi Lam , Dick-shum Lau , Chi-kin Chow , Sze-ning Chong , Pak-wai Chan , Ngo-ching Leung
{"title":"Model validation and applications of wave and current forecasts from the Hong Kong Observatory's Operational Marine Forecasting System","authors":"Wai Kong , Ching-chi Lam , Dick-shum Lau , Chi-kin Chow , Sze-ning Chong , Pak-wai Chan , Ngo-ching Leung","doi":"10.1016/j.ocemod.2024.102393","DOIUrl":null,"url":null,"abstract":"<div><p>The Hong Kong Observatory has been running an Operational Marine Forecasting System (OMFS) adapted from the Regional Ocean Modelling System (ROMS) coupled with the WaveWatch III and SWAN wave models to provide wave, current and sea temperature forecasts up to 144 h twice a day since December 2021. To facilitate users’ interpretation of model forecasts of significant wave height and current speed in coastal predictions and open seas which are of particular significance in high wind situations, model forecasts were validated against moored buoy observations and wave recorder measurements near the shores of Hong Kong and drifting buoy data over the South China Sea, as well as Mercator Ocean model reanalysis in 2022. The validation results showed that the wave forecasts generally agreed well with the buoy observations with coefficient of determination (R<sup>2</sup>) of around 0.7 and root-mean-square error (RMSE) of less than 0.2 m up to 72 h ahead. The R<sup>2</sup> for sea current forecasts ranged between 0.4 and 0.6, and the RMSE was around 8 to 11 cm/s in near shores up to <em>T</em> + 144 forecast hours. Validation against drifting buoy demonstrated that the trend of current forecasts generally agreed well with the measurements. RMSE of surface current forecasts over open seas ranged from 19 cm/s for 24-hour forecast to around 30 cm/s for 144-hour forecast when compared against Mercator Ocean reanalysis. Results from the current downscaling approach could serve as a benchmark reference for HKO to enhance OMFS in the future. In this paper, applications of model forecasts in the provision of marine weather services in Hong Kong are also introduced.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"190 ","pages":"Article 102393"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1463500324000805/pdfft?md5=266e2969315d211d062c13bff82cb79a&pid=1-s2.0-S1463500324000805-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324000805","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Hong Kong Observatory has been running an Operational Marine Forecasting System (OMFS) adapted from the Regional Ocean Modelling System (ROMS) coupled with the WaveWatch III and SWAN wave models to provide wave, current and sea temperature forecasts up to 144 h twice a day since December 2021. To facilitate users’ interpretation of model forecasts of significant wave height and current speed in coastal predictions and open seas which are of particular significance in high wind situations, model forecasts were validated against moored buoy observations and wave recorder measurements near the shores of Hong Kong and drifting buoy data over the South China Sea, as well as Mercator Ocean model reanalysis in 2022. The validation results showed that the wave forecasts generally agreed well with the buoy observations with coefficient of determination (R2) of around 0.7 and root-mean-square error (RMSE) of less than 0.2 m up to 72 h ahead. The R2 for sea current forecasts ranged between 0.4 and 0.6, and the RMSE was around 8 to 11 cm/s in near shores up to T + 144 forecast hours. Validation against drifting buoy demonstrated that the trend of current forecasts generally agreed well with the measurements. RMSE of surface current forecasts over open seas ranged from 19 cm/s for 24-hour forecast to around 30 cm/s for 144-hour forecast when compared against Mercator Ocean reanalysis. Results from the current downscaling approach could serve as a benchmark reference for HKO to enhance OMFS in the future. In this paper, applications of model forecasts in the provision of marine weather services in Hong Kong are also introduced.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.