{"title":"The utility of small nutation angle 1H pulses for NMR studies of methyl-containing side-chain dynamics in proteins","authors":"Vitali Tugarinov, G. Marius Clore","doi":"10.1016/j.pnmrs.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>We describe the utility of small nutation angle (acute; <90°) <sup>1</sup>H radiofrequency pulses for efficient manipulation of magnetization in selectively [<sup>13</sup>CH<sub>3</sub>]-labeled methyl groups of otherwise deuterated proteins. Focusing primarily on NMR applications that target either fast (pico-to-nanosecond) motions of the methyl group three-fold rotation axis, or slow (micro-to-millisecond) processes associated with chemical exchange, we show that significant simplification of the <sup>13</sup>CH<sub>3</sub> spin-system and, as a consequence, of NMR pulse schemes, may be achieved in certain cases by the proper choice of the flip-angle of the <sup>1</sup>H acute-angle pulse. In other instances, appropriate adjustment of acute-angle <sup>1</sup>H pulses permits optimization of the sensitivity of NMR experiments. The results of acute-angle pulse based NMR experiments are validated by comparison with well-established NMR techniques for the characterization of fast dynamics of methyl-containing side-chains and chemical exchange processes.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"144 ","pages":"Pages 40-62"},"PeriodicalIF":7.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Magnetic Resonance Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007965652400013X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We describe the utility of small nutation angle (acute; <90°) 1H radiofrequency pulses for efficient manipulation of magnetization in selectively [13CH3]-labeled methyl groups of otherwise deuterated proteins. Focusing primarily on NMR applications that target either fast (pico-to-nanosecond) motions of the methyl group three-fold rotation axis, or slow (micro-to-millisecond) processes associated with chemical exchange, we show that significant simplification of the 13CH3 spin-system and, as a consequence, of NMR pulse schemes, may be achieved in certain cases by the proper choice of the flip-angle of the 1H acute-angle pulse. In other instances, appropriate adjustment of acute-angle 1H pulses permits optimization of the sensitivity of NMR experiments. The results of acute-angle pulse based NMR experiments are validated by comparison with well-established NMR techniques for the characterization of fast dynamics of methyl-containing side-chains and chemical exchange processes.
期刊介绍:
Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing research related to the theory and application of NMR spectroscopy. This technique is widely applied in chemistry, physics, biochemistry and materials science, and also in many areas of biology and medicine. The journal publishes review articles covering applications in all of these and in related subjects, as well as in-depth treatments of the fundamental theory of and instrumental developments in NMR spectroscopy.