{"title":"A framework specialized for large-scale vehicle–bridge interaction simulation","authors":"Zhuoran Han, Chul-Woo Kim, Kai-Chun Chang","doi":"10.1016/j.compstruc.2024.107429","DOIUrl":null,"url":null,"abstract":"<div><p>The coupled motion between bridges and vehicles is known as vehicle–bridge interaction (VBI). It is crucial for bridge design, monitoring, and vehicle safety and comfort. VBI studies typically rely on general-purpose finite element (FE) software. Although precise, they are not optimized for simulating large-scale bridges with numerous vehicles, which can result in long processing times and modeling challenges. This paper presents a self-developed framework in MATLAB™ for large-scale VBI simulation. The framework divides the simulation task into five modules and supports asynchronous seismic excitation (ASE), handles different deck geometries, unifies all road vehicle models and inputs with a vehicle library, supports variable vehicle velocity (VVV) and different traffic scenarios, and handles wheel–deck detachment. All functions have been designed with easily accessible interfaces to facilitate secondary development. The framework was verified using a 2D sprung mass benchmark case compared to a closed-form solution, and a 3D simplified model compared to commercial FE software. It was also validated through a laboratory experiment. Further demonstrations of a large-scale VBI system highlighted new phenomena and emphasized the significance of considering the ASE effect in similar systems. With ongoing improvements, the framework has the potential to become a practical tool for VBI simulation.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045794924001585/pdfft?md5=635b9f5a79c6fec2624ec0a372c1bcfe&pid=1-s2.0-S0045794924001585-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924001585","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The coupled motion between bridges and vehicles is known as vehicle–bridge interaction (VBI). It is crucial for bridge design, monitoring, and vehicle safety and comfort. VBI studies typically rely on general-purpose finite element (FE) software. Although precise, they are not optimized for simulating large-scale bridges with numerous vehicles, which can result in long processing times and modeling challenges. This paper presents a self-developed framework in MATLAB™ for large-scale VBI simulation. The framework divides the simulation task into five modules and supports asynchronous seismic excitation (ASE), handles different deck geometries, unifies all road vehicle models and inputs with a vehicle library, supports variable vehicle velocity (VVV) and different traffic scenarios, and handles wheel–deck detachment. All functions have been designed with easily accessible interfaces to facilitate secondary development. The framework was verified using a 2D sprung mass benchmark case compared to a closed-form solution, and a 3D simplified model compared to commercial FE software. It was also validated through a laboratory experiment. Further demonstrations of a large-scale VBI system highlighted new phenomena and emphasized the significance of considering the ASE effect in similar systems. With ongoing improvements, the framework has the potential to become a practical tool for VBI simulation.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.