Peiying Zhang , Zixuan Cui , Neeraj Kumar , Jian Wang , Wei Zhang , Lizhuang Tan
{"title":"Local search resource allocation algorithm for space-based backbone network in Deep Reinforcement Learning method","authors":"Peiying Zhang , Zixuan Cui , Neeraj Kumar , Jian Wang , Wei Zhang , Lizhuang Tan","doi":"10.1016/j.adhoc.2024.103575","DOIUrl":null,"url":null,"abstract":"<div><p>With the evolution of Space-based backbone networks, the demand for enhanced efficiency and stability in network resource allocation has become increasingly critical, presenting a substantial challenge to conventional allocation methods. In response, we introduce an innovative resource allocation algorithm for space-based backbone networks. This algorithm represents a synergistic fusion of Deep Reinforcement Learning (DRL) and Local Search (LS) methodologies. It is specifically designed to reduce the extensive training duration associated with traditional policy networks, a crucial aspect in assuring optimal service quality. Our algorithm is structured within a two-stage framework that seamlessly integrates DRL and LS. A distinctive feature of our approach is the incorporation of link reliability into the algorithmic design. This element is meticulously tailored to address the dynamic and heterogeneous nature of space-based networks, ensuring effective resource management. The effectiveness of our approach is substantiated through extensive simulation results. These results demonstrate that the integration of DRL with LS not only enhances training efficiency but also exhibits significant improvements in resource allocation outcomes. Our work represents a noteworthy contribution to the development of practical optimization strategies in space-based networks, merging DRL with traditional methodologies for improved performance.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524001860","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the evolution of Space-based backbone networks, the demand for enhanced efficiency and stability in network resource allocation has become increasingly critical, presenting a substantial challenge to conventional allocation methods. In response, we introduce an innovative resource allocation algorithm for space-based backbone networks. This algorithm represents a synergistic fusion of Deep Reinforcement Learning (DRL) and Local Search (LS) methodologies. It is specifically designed to reduce the extensive training duration associated with traditional policy networks, a crucial aspect in assuring optimal service quality. Our algorithm is structured within a two-stage framework that seamlessly integrates DRL and LS. A distinctive feature of our approach is the incorporation of link reliability into the algorithmic design. This element is meticulously tailored to address the dynamic and heterogeneous nature of space-based networks, ensuring effective resource management. The effectiveness of our approach is substantiated through extensive simulation results. These results demonstrate that the integration of DRL with LS not only enhances training efficiency but also exhibits significant improvements in resource allocation outcomes. Our work represents a noteworthy contribution to the development of practical optimization strategies in space-based networks, merging DRL with traditional methodologies for improved performance.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.