Yuejie Lu , Bingyi Lin , Siyuan Chai , Hongxing Wang , Junjie Zhou , Jiating Hu , Yongzhong Du , Chunxia Zhao , Liming Wu
{"title":"A pyroptosis-enhanced leucocyte-hitchhiking liposomal nanoplatform for potentiated immunotherapy of hepatocellular carcinoma","authors":"Yuejie Lu , Bingyi Lin , Siyuan Chai , Hongxing Wang , Junjie Zhou , Jiating Hu , Yongzhong Du , Chunxia Zhao , Liming Wu","doi":"10.1016/j.mtnano.2024.100492","DOIUrl":null,"url":null,"abstract":"<div><p>Hepatocellular carcinoma (HCC) is a highly malignant tumor with unsatisfactory response to immunotherapy. Pyroptosis, a recently discovered form of regulated cell death (RCD), possesses a huge potential to enhance the immunotherapy efficiency against HCC. To achieve efficient drug delivery and ideal activation of antitumor immunity, an E-selectin modified liposomal nanoplatform co-loading gemcitabine elaidate and BMS-202 (a small molecule programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitor) was designed. Following intravenous injection, the liposomal nanoplatform could efficiently bind to sialylated carbohydrates on the surface of peripheral blood leucocytes via E-selectin, subsequently hitchhiking with leucocytes to realize substantial accumulation in the HCC tissue. After cellular uptake by HCC cells, the released gemcitabine could trigger gasdermin E (GSDME)-dependent pyroptosis with the release of danger-associated molecular patterns (DAMPs) and pro-inflammatory cytokines, thus generating antitumor immunity. The released BMS-202 could further relieve immune suppression by blocking the formation of PD-1/PD-L1 complex. More importantly, gemcitabine-triggered tumor pyroptosis enhanced natural orientation of leucocytes to inflammatory tumor site, further increasing the nanoplatform delivery by facilitating tumor leucocyte infiltration through a positive feedback loop. The <em>in vivo</em> efficacy of the fabricated liposomes demonstrated a favorable antitumor immunity by promoting dendritic cell maturation and T cell activation. In summary, this pyroptosis-enhanced leucocyte-hitchhiking liposomal nanoplatform suggests synergistic antitumor activity and unique ability to modulate drug delivery, showing promise as a highly efficient strategy for potentiated tumor immunotherapy, with a potential for clinical translation.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"27 ","pages":"Article 100492"},"PeriodicalIF":8.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000427","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with unsatisfactory response to immunotherapy. Pyroptosis, a recently discovered form of regulated cell death (RCD), possesses a huge potential to enhance the immunotherapy efficiency against HCC. To achieve efficient drug delivery and ideal activation of antitumor immunity, an E-selectin modified liposomal nanoplatform co-loading gemcitabine elaidate and BMS-202 (a small molecule programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitor) was designed. Following intravenous injection, the liposomal nanoplatform could efficiently bind to sialylated carbohydrates on the surface of peripheral blood leucocytes via E-selectin, subsequently hitchhiking with leucocytes to realize substantial accumulation in the HCC tissue. After cellular uptake by HCC cells, the released gemcitabine could trigger gasdermin E (GSDME)-dependent pyroptosis with the release of danger-associated molecular patterns (DAMPs) and pro-inflammatory cytokines, thus generating antitumor immunity. The released BMS-202 could further relieve immune suppression by blocking the formation of PD-1/PD-L1 complex. More importantly, gemcitabine-triggered tumor pyroptosis enhanced natural orientation of leucocytes to inflammatory tumor site, further increasing the nanoplatform delivery by facilitating tumor leucocyte infiltration through a positive feedback loop. The in vivo efficacy of the fabricated liposomes demonstrated a favorable antitumor immunity by promoting dendritic cell maturation and T cell activation. In summary, this pyroptosis-enhanced leucocyte-hitchhiking liposomal nanoplatform suggests synergistic antitumor activity and unique ability to modulate drug delivery, showing promise as a highly efficient strategy for potentiated tumor immunotherapy, with a potential for clinical translation.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites