Spontaneous formation, gene regulation of Trichoderma and slow decomposition in cocopeat

Avinash Sharma , Mainu Hazarika , Punabati Heisnam , Himanshu Pandey , V.S. Devadas , Praveen Kumar , Devendra Singh , Amit Vashishth , Monoj Sutradhar , Rani Jha
{"title":"Spontaneous formation, gene regulation of Trichoderma and slow decomposition in cocopeat","authors":"Avinash Sharma ,&nbsp;Mainu Hazarika ,&nbsp;Punabati Heisnam ,&nbsp;Himanshu Pandey ,&nbsp;V.S. Devadas ,&nbsp;Praveen Kumar ,&nbsp;Devendra Singh ,&nbsp;Amit Vashishth ,&nbsp;Monoj Sutradhar ,&nbsp;Rani Jha","doi":"10.1016/j.nxsust.2024.100051","DOIUrl":null,"url":null,"abstract":"<div><p>Cocopeat has various distinguishing properties that encourage the slow decomposition and spontaneous <em>Trichoderma</em> growth. The cocopeat synthesizes responsive chemicals and regulatory mechanisms which assist in the <em>Trichoderma</em> growth. The exact chemical stimulant and efficient mechanisms governing the spontaneous <em>Trichoderma</em> growth in cocopeat remain unknown. The high lignin and cellulose concentration produces actinomycetes and deuteromycetes, which trigger slow decomposition in cocopeat. The chemical components, temperature, pH, nutrients, and aeration all have a direct impact <em>Trichoderma</em> growth and slow decomposition. The chemical constituents lignin, suberin, cutin, pectin, cellulose, and hemicellulose are analyzed with sodium hydroxide solution and examined using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDAX), fourier transform infrared (FTIR) spectra, x-ray diffraction (XRD), and thermogravimetry. The decomposition dynamics are determined using a mettler thermogravimetric analyzer. Simultaneously thermogravimetry and differential scanning calorimetry are used to examine the stages of decomposition. The decomposition reactions are investigated using the distributed active energy model (DAEM). The glucose Murashige and Skoog (MS) media, chitin Murashige and Skoog (MS) media, Murashige and Skoog (MS) basal media, high-density oligonucleotide microarray, expressed sequence tag-based transcript and Blast2GO suite, hierarchical clustering and heat representation are involved in examination of <em>Trichoderma</em> species. The Upside regulating genes respond to signal transduction, transcription, translation, post-translational modification, and protein folding with the signal transcription factor Pac1 (PacC) for <em>Trichoderma</em> species growth. The dye decolorization assay, genome-wide gene family evolutionary analysis, and whole-genome sequencing were used to discover prospective genes for detecting high or slow decomposition in fungi. The methodologies and technology have the potential to investigate <em>Trichoderma</em> type, response chemicals, and mechanisms underlying <em>Trichoderma</em> growth and slow decomposition in cocopeat.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294982362400028X/pdfft?md5=2459b0b65ac6efc08de4aa3a532dad6e&pid=1-s2.0-S294982362400028X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294982362400028X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cocopeat has various distinguishing properties that encourage the slow decomposition and spontaneous Trichoderma growth. The cocopeat synthesizes responsive chemicals and regulatory mechanisms which assist in the Trichoderma growth. The exact chemical stimulant and efficient mechanisms governing the spontaneous Trichoderma growth in cocopeat remain unknown. The high lignin and cellulose concentration produces actinomycetes and deuteromycetes, which trigger slow decomposition in cocopeat. The chemical components, temperature, pH, nutrients, and aeration all have a direct impact Trichoderma growth and slow decomposition. The chemical constituents lignin, suberin, cutin, pectin, cellulose, and hemicellulose are analyzed with sodium hydroxide solution and examined using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDAX), fourier transform infrared (FTIR) spectra, x-ray diffraction (XRD), and thermogravimetry. The decomposition dynamics are determined using a mettler thermogravimetric analyzer. Simultaneously thermogravimetry and differential scanning calorimetry are used to examine the stages of decomposition. The decomposition reactions are investigated using the distributed active energy model (DAEM). The glucose Murashige and Skoog (MS) media, chitin Murashige and Skoog (MS) media, Murashige and Skoog (MS) basal media, high-density oligonucleotide microarray, expressed sequence tag-based transcript and Blast2GO suite, hierarchical clustering and heat representation are involved in examination of Trichoderma species. The Upside regulating genes respond to signal transduction, transcription, translation, post-translational modification, and protein folding with the signal transcription factor Pac1 (PacC) for Trichoderma species growth. The dye decolorization assay, genome-wide gene family evolutionary analysis, and whole-genome sequencing were used to discover prospective genes for detecting high or slow decomposition in fungi. The methodologies and technology have the potential to investigate Trichoderma type, response chemicals, and mechanisms underlying Trichoderma growth and slow decomposition in cocopeat.

Abstract Image

椰糠中毛霉的自发形成、基因调控和缓慢分解
椰糠具有各种显著特性,可促进缓慢分解和毛霉的自发生长。椰糠合成反应性化学物质和调节机制,有助于毛霉的生长。椰糠中毛霉自发生长的确切化学刺激剂和有效机制仍然未知。高浓度的木质素和纤维素会产生放线菌和脱氧核糖核酸,从而引发椰糠的缓慢分解。化学成分、温度、pH 值、养分和通气条件都会直接影响毛霉的生长和缓慢分解。使用氢氧化钠溶液分析了木质素、单宁、角质素、果胶、纤维素和半纤维素等化学成分,并使用扫描电子显微镜(SEM)、能量色散 X 射线光谱(EDAX)、傅立叶变换红外光谱(FTIR)、X 射线衍射(XRD)和热重仪进行了检测。分解动力学是使用 mettler 热重分析仪测定的。同时使用热重分析法和差示扫描量热法检测分解的各个阶段。分解反应采用分布式活性能量模型(DAEM)进行研究。在研究毛霉菌种时,使用了葡萄糖室氏培养基、几丁质室氏培养基、室氏基础培养基、高密度寡核苷酸芯片、基于表达序列标签的转录本和 Blast2GO 套件、层次聚类和热表示法。Upside调控基因与信号转导、转录、翻译、翻译后修饰和蛋白质折叠有关,其中信号转录因子Pac1(PacC)是毛霉菌生长的关键。染料脱色试验、全基因组基因家族进化分析和全基因组测序被用来发现检测真菌高分解或慢分解的前瞻性基因。这些方法和技术有望研究毛霉类型、响应化学物质以及毛霉在椰糠中生长和缓慢分解的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信