Vanadium nitride /poly(0-methoxy aniline)- poly(3,4-ethylene dioxythiophene) interpenetrated into nanocomposite for efficient photocatalytic degradation of methylene blue and enhanced electrochemical sensing of mebendazole
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology
{"title":"Vanadium nitride /poly(0-methoxy aniline)- poly(3,4-ethylene dioxythiophene) interpenetrated into nanocomposite for efficient photocatalytic degradation of methylene blue and enhanced electrochemical sensing of mebendazole","authors":"Munusamy Settu , Govindhan Gnanamoorthy , Bavani Thirugnanam , Narayanan Vengidusamy , Majed A. Alotaibi","doi":"10.1016/j.biosx.2024.100508","DOIUrl":null,"url":null,"abstract":"<div><p>Vanadium nitride-poly (0-methoxy aniline)- poly(3,4-ethylene dioxythiophene) (VN-POMA-PEDOT) hybrid was synthesized via ammonolysis and chemical oxidative polymerization technique using VN-POMA-PEDOT/GCE with electrocatalytic activity has two dimensional VN hierarchical porosity with POMA-PEDOT structure created VN-POMA-PEDOT modified GCE working electrode. Donor-acceptor behavior and double-layer growth enable enhanced electrochemical performance and catalytic activity of mebendazole (MBZ). This work investigated the electrochemical sensing conduct of a VN-POMA-PEDOT hybrid composite towards MBZ. The detection limit (DL) and quantification limit (QL) were determined to be 2.192 × 10<sup>−9</sup> μM μA<sup>−1</sup> and 5.245 × 10<sup>−9</sup> M μA<sup>−1</sup>. Estimation of anti-interference ability, long-term stability, and reproducibility revealed that the prepared VN-POMA-PEDOT electrode is appropriate for the electrochemical sensing finding of MBZ in real analysis, such by way of anti-helminthic drug milk. The VN-POMA-PEDOT achieved 98.9% efficiency in the photocatalytic degradation of methylene blue (MB) within 50 min with degradation rate 8.3 × 10<sup>−3</sup> min<sup>−1</sup>. The suppleness of this method was confirmed by the hybrid morphology VN-POMA-PEDOT, which shows an enormously superior and enhanced photocatalytic presentation of MB.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100508"},"PeriodicalIF":10.6100,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000724/pdfft?md5=7bd5c24455aaec7844e13a98a85654af&pid=1-s2.0-S2590137024000724-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Vanadium nitride-poly (0-methoxy aniline)- poly(3,4-ethylene dioxythiophene) (VN-POMA-PEDOT) hybrid was synthesized via ammonolysis and chemical oxidative polymerization technique using VN-POMA-PEDOT/GCE with electrocatalytic activity has two dimensional VN hierarchical porosity with POMA-PEDOT structure created VN-POMA-PEDOT modified GCE working electrode. Donor-acceptor behavior and double-layer growth enable enhanced electrochemical performance and catalytic activity of mebendazole (MBZ). This work investigated the electrochemical sensing conduct of a VN-POMA-PEDOT hybrid composite towards MBZ. The detection limit (DL) and quantification limit (QL) were determined to be 2.192 × 10−9 μM μA−1 and 5.245 × 10−9 M μA−1. Estimation of anti-interference ability, long-term stability, and reproducibility revealed that the prepared VN-POMA-PEDOT electrode is appropriate for the electrochemical sensing finding of MBZ in real analysis, such by way of anti-helminthic drug milk. The VN-POMA-PEDOT achieved 98.9% efficiency in the photocatalytic degradation of methylene blue (MB) within 50 min with degradation rate 8.3 × 10−3 min−1. The suppleness of this method was confirmed by the hybrid morphology VN-POMA-PEDOT, which shows an enormously superior and enhanced photocatalytic presentation of MB.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.