A structure-preserving local discontinuous Galerkin method for the stochastic KdV equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xuewei Liu , Zhanwen Yang , Qiang Ma , Xiaohua Ding
{"title":"A structure-preserving local discontinuous Galerkin method for the stochastic KdV equation","authors":"Xuewei Liu ,&nbsp;Zhanwen Yang ,&nbsp;Qiang Ma ,&nbsp;Xiaohua Ding","doi":"10.1016/j.apnum.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a local discontinuous Galerkin (LDG) method for the stochastic Korteweg-de Vries (KdV) equation with multi-dimensional multiplicative noise. In the mean square sense, we show that the numerical method is <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> stable and it preserves energy conservation and energy dissipation. If the degree of the polynomial is <em>n</em>, the optimal error estimate in the mean square sense can reach as <span><math><mi>n</mi><mo>+</mo><mn>1</mn></math></span>. Finally, structure-preserving and convergence are verified by numerical experiments.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a local discontinuous Galerkin (LDG) method for the stochastic Korteweg-de Vries (KdV) equation with multi-dimensional multiplicative noise. In the mean square sense, we show that the numerical method is L2 stable and it preserves energy conservation and energy dissipation. If the degree of the polynomial is n, the optimal error estimate in the mean square sense can reach as n+1. Finally, structure-preserving and convergence are verified by numerical experiments.

随机 KdV 方程的结构保持局部非连续伽勒金方法
本文针对具有多维乘法噪声的随机 Korteweg-de Vries(KdV)方程提出了一种局部非连续 Galerkin(LDG)方法。从均方意义上讲,我们证明了该数值方法是 L2 稳定的,并且保持了能量守恒和能量耗散。如果多项式的阶数为 n,均方意义上的最优误差估计值可达 n+1。最后,通过数值实验验证了结构保持性和收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信