Xuewei Liu , Zhanwen Yang , Qiang Ma , Xiaohua Ding
{"title":"A structure-preserving local discontinuous Galerkin method for the stochastic KdV equation","authors":"Xuewei Liu , Zhanwen Yang , Qiang Ma , Xiaohua Ding","doi":"10.1016/j.apnum.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a local discontinuous Galerkin (LDG) method for the stochastic Korteweg-de Vries (KdV) equation with multi-dimensional multiplicative noise. In the mean square sense, we show that the numerical method is <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> stable and it preserves energy conservation and energy dissipation. If the degree of the polynomial is <em>n</em>, the optimal error estimate in the mean square sense can reach as <span><math><mi>n</mi><mo>+</mo><mn>1</mn></math></span>. Finally, structure-preserving and convergence are verified by numerical experiments.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a local discontinuous Galerkin (LDG) method for the stochastic Korteweg-de Vries (KdV) equation with multi-dimensional multiplicative noise. In the mean square sense, we show that the numerical method is stable and it preserves energy conservation and energy dissipation. If the degree of the polynomial is n, the optimal error estimate in the mean square sense can reach as . Finally, structure-preserving and convergence are verified by numerical experiments.