High Strength, Swelling Resistance, Antimicrobial and Conductive Zwitterionic Hydrogel Based on Cellulose Frame

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jinfei Wang, Jinni Luo, Zunkai Jia, Yuan Chen, Chenglong Li, Kejun Zhong, Jie Xiang and Pengxiang Jia*, 
{"title":"High Strength, Swelling Resistance, Antimicrobial and Conductive Zwitterionic Hydrogel Based on Cellulose Frame","authors":"Jinfei Wang,&nbsp;Jinni Luo,&nbsp;Zunkai Jia,&nbsp;Yuan Chen,&nbsp;Chenglong Li,&nbsp;Kejun Zhong,&nbsp;Jie Xiang and Pengxiang Jia*,&nbsp;","doi":"10.1021/acsapm.4c00872","DOIUrl":null,"url":null,"abstract":"<p >A high strength, swelling resistance, and conductive hydrogel with excellent photothermal effect and antimicrobial property is prepared based on a cellulose frame. First, cellulose is dissolved in a NaOH/urea aqueous solution. The cellulose solution is self-assembled in an ethanol environment to form a cellulose frame. The frame is then immersed in the acrylamide (AM) and 2-methylacryloxyethyl phosphocholine (MPC) solution. A Cel-PA<sub><i>x</i></sub>M<sub><i>y</i></sub> cellulose hydrogel is prepared by <i>in situ</i> copolymerization of AM and MPC. Lastly, Cel-PA<sub><i>x</i></sub>M<sub><i>y</i></sub> hydrogel is soaked in a tannic acid/ferric chloride (TA@Fe<sup>3+</sup>) solution to prepare the TA@Fe<sup>3+</sup>-Cel-PA<sub><i>x</i></sub>M<sub><i>y</i></sub> hydrogel. The obtained hydrogel shows excellent mechanical strength (toughness 600 KJ/m<sup>3</sup>, Young’s modulus 225 KJ/m<sup>3</sup>) due to the presence of a rigid cellulose frame. The introduction of TA@Fe<sup>3+</sup> not only increases the cross-linking density of hydrogels, making hydrogels have extraordinary swelling resistance (swelling ratio 50 ± 20%), but also endows the hydrogels with excellent electrical conductivity (conductivity 1.0 S/m, GF 0.75, response time 572.27 ms), good near-infrared photothermal effect, and outstanding antimicrobial property. This work proposes an effective strategy for the development of high strength, swelling resistance, antimicrobial and conductive zwitterionic hydrogel, which exhibits significant promise for wearable sensors and electronic devices.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c00872","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A high strength, swelling resistance, and conductive hydrogel with excellent photothermal effect and antimicrobial property is prepared based on a cellulose frame. First, cellulose is dissolved in a NaOH/urea aqueous solution. The cellulose solution is self-assembled in an ethanol environment to form a cellulose frame. The frame is then immersed in the acrylamide (AM) and 2-methylacryloxyethyl phosphocholine (MPC) solution. A Cel-PAxMy cellulose hydrogel is prepared by in situ copolymerization of AM and MPC. Lastly, Cel-PAxMy hydrogel is soaked in a tannic acid/ferric chloride (TA@Fe3+) solution to prepare the TA@Fe3+-Cel-PAxMy hydrogel. The obtained hydrogel shows excellent mechanical strength (toughness 600 KJ/m3, Young’s modulus 225 KJ/m3) due to the presence of a rigid cellulose frame. The introduction of TA@Fe3+ not only increases the cross-linking density of hydrogels, making hydrogels have extraordinary swelling resistance (swelling ratio 50 ± 20%), but also endows the hydrogels with excellent electrical conductivity (conductivity 1.0 S/m, GF 0.75, response time 572.27 ms), good near-infrared photothermal effect, and outstanding antimicrobial property. This work proposes an effective strategy for the development of high strength, swelling resistance, antimicrobial and conductive zwitterionic hydrogel, which exhibits significant promise for wearable sensors and electronic devices.

Abstract Image

基于纤维素框架的高强度、耐溶胀、抗菌和导电性齐聚物水凝胶
以纤维素框架为基础,制备了一种高强度、耐溶胀、导电且具有优异光热效应和抗菌性能的水凝胶。首先,将纤维素溶解在 NaOH/ 尿素水溶液中。纤维素溶液在乙醇环境中自组装形成纤维素框架。然后将框架浸入丙烯酰胺(AM)和 2-甲基丙烯酰氧乙基磷酰胆碱(MPC)溶液中。通过 AM 和 MPC 的原位共聚,制备出 Cel-PAxMy 纤维素水凝胶。最后,将 Cel-PAxMy 水凝胶浸泡在单宁酸/氯化铁(TA@Fe3+)溶液中,制备出 TA@Fe3+-Cel-PAxMy 水凝胶。由于刚性纤维素框架的存在,获得的水凝胶显示出优异的机械强度(韧性 600 KJ/m3,杨氏模量 225 KJ/m3)。TA@Fe3+ 的引入不仅增加了水凝胶的交联密度,使水凝胶具有超强的抗溶胀性(溶胀率为 50 ± 20%),还赋予了水凝胶优异的导电性(导电率 1.0 S/m,GF 0.75,响应时间 572.27 ms)、良好的近红外光热效应和突出的抗菌性。这项研究为开发高强度、耐溶胀、抗菌和导电的齐聚物水凝胶提出了一种有效的策略,为可穿戴传感器和电子设备的应用带来了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信