Zheng Wu, Divya Bezwada, Feng Cai, Robert C Harris, Bookyung Ko, Varun Sondhi, Chunxiao Pan, Hieu S Vu, Phong T Nguyen, Brandon Faubert, Ling Cai, Hongli Chen, Misty Martin-Sandoval, Duyen Do, Wen Gu, Yuanyuan Zhang, Yuannyu Zhang, Bailey Brooks, Sherwin Kelekar, Lauren G Zacharias, K Celeste Oaxaca, Joao S Patricio, Thomas P Mathews, Javier Garcia-Bermudez, Min Ni, Ralph J DeBerardinis
{"title":"Electron transport chain inhibition increases cellular dependence on purine transport and salvage.","authors":"Zheng Wu, Divya Bezwada, Feng Cai, Robert C Harris, Bookyung Ko, Varun Sondhi, Chunxiao Pan, Hieu S Vu, Phong T Nguyen, Brandon Faubert, Ling Cai, Hongli Chen, Misty Martin-Sandoval, Duyen Do, Wen Gu, Yuanyuan Zhang, Yuannyu Zhang, Bailey Brooks, Sherwin Kelekar, Lauren G Zacharias, K Celeste Oaxaca, Joao S Patricio, Thomas P Mathews, Javier Garcia-Bermudez, Min Ni, Ralph J DeBerardinis","doi":"10.1016/j.cmet.2024.05.014","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11240302/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.05.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.