{"title":"Lipase-mediated alcoholysis for in situ production of ester bioaromas in licuri oil for cosmetic applications","authors":"Rafael Chelala Moreira , Gislaine Ricci Leonardi , Juliano Lemos Bicas","doi":"10.1016/j.jbiotec.2024.06.010","DOIUrl":null,"url":null,"abstract":"<div><p>Bioaromas can be produced by lipases either through their hydrolytic or (trans)esterifying activities. Therefore, this work reports the development of a lipase-catalyzed biotransformed licuri oil, forming volatile ethyl esters with odor notes resembling tropical fruits. Ethyl octanoate formation was promoted when 7.0 % (m/v) Lipozyme 435® was used to convert a grain alcohol:licuri oil mixture (51:49, v/v) at 58ºC and 70 rpm for 6 hours. The biotransformed oil has shown antimicrobial activity against <em>Staphylococcus hominis</em>, <em>S. epidermidis,</em> and <em>Corynebacterium xerosis</em>, bacteria associated with bad skin odor. Finally, this biotransformed oil was used without further treatments (e.g., recovery or purification procedures) to prepare two cosmetic formulations (in a dosage of 1.5 %), aiming for both fragrant and deodorant activity.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624001676","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bioaromas can be produced by lipases either through their hydrolytic or (trans)esterifying activities. Therefore, this work reports the development of a lipase-catalyzed biotransformed licuri oil, forming volatile ethyl esters with odor notes resembling tropical fruits. Ethyl octanoate formation was promoted when 7.0 % (m/v) Lipozyme 435® was used to convert a grain alcohol:licuri oil mixture (51:49, v/v) at 58ºC and 70 rpm for 6 hours. The biotransformed oil has shown antimicrobial activity against Staphylococcus hominis, S. epidermidis, and Corynebacterium xerosis, bacteria associated with bad skin odor. Finally, this biotransformed oil was used without further treatments (e.g., recovery or purification procedures) to prepare two cosmetic formulations (in a dosage of 1.5 %), aiming for both fragrant and deodorant activity.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.