Development of Bio-Voltage Operated Humidity-Sensory Neurons Comprising Self-Assembled Peptide Memristors

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ziyu Lv, Shirui Zhu, Yan Wang, Yanyun Ren, Mingtao Luo, Hanning Wang, Guohua Zhang, Yongbiao Zhai, Shilong Zhao, Ye Zhou, Minghao Jiang, Yan-Bing Leng, Su-Ting Han
{"title":"Development of Bio-Voltage Operated Humidity-Sensory Neurons Comprising Self-Assembled Peptide Memristors","authors":"Ziyu Lv,&nbsp;Shirui Zhu,&nbsp;Yan Wang,&nbsp;Yanyun Ren,&nbsp;Mingtao Luo,&nbsp;Hanning Wang,&nbsp;Guohua Zhang,&nbsp;Yongbiao Zhai,&nbsp;Shilong Zhao,&nbsp;Ye Zhou,&nbsp;Minghao Jiang,&nbsp;Yan-Bing Leng,&nbsp;Su-Ting Han","doi":"10.1002/adma.202405145","DOIUrl":null,"url":null,"abstract":"<p>Biomimetic humidity sensors offer a low-power approach for respiratory monitoring in early lung-disease diagnosis. However, balancing miniaturization and energy efficiency remains challenging. This study addresses this issue by introducing a bioinspired humidity-sensing neuron comprising a self-assembled peptide nanowire (NW) memristor with unique proton-coupled ion transport. The proposed neuron shows a low Ag<sup>+</sup> activation energy owing to the NW and redox activity of the tyrosine (Tyr)-rich peptide in the system, facilitating ultralow electric-field–driven threshold switching and a high energy efficiency. Additionally, Ag<sup>+</sup> migration in the system can be controlled by a proton source owing to the hydrophilic nature of the phenolic hydroxyl group in Tyr, enabling the humidity-based control of the conductance state of the memristor. Furthermore, a memristor-based neuromorphic perception neuron that can encode humidity signals into spikes is proposed. The spiking characteristics of this neuron can be modulated to emulate the strength-modulated spike-frequency characteristics of biological neurons. A three-layer spiking neural network with input neurons comprising these highly tunable humidity perception neurons shows an accuracy of 92.68% in lung-disease diagnosis. This study paves the way for developing bioinspired self-assembly strategies to construct neuromorphic perception systems, bridging the gap between artificial and biological sensing and processing paradigms.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202405145","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202405145","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomimetic humidity sensors offer a low-power approach for respiratory monitoring in early lung-disease diagnosis. However, balancing miniaturization and energy efficiency remains challenging. This study addresses this issue by introducing a bioinspired humidity-sensing neuron comprising a self-assembled peptide nanowire (NW) memristor with unique proton-coupled ion transport. The proposed neuron shows a low Ag+ activation energy owing to the NW and redox activity of the tyrosine (Tyr)-rich peptide in the system, facilitating ultralow electric-field–driven threshold switching and a high energy efficiency. Additionally, Ag+ migration in the system can be controlled by a proton source owing to the hydrophilic nature of the phenolic hydroxyl group in Tyr, enabling the humidity-based control of the conductance state of the memristor. Furthermore, a memristor-based neuromorphic perception neuron that can encode humidity signals into spikes is proposed. The spiking characteristics of this neuron can be modulated to emulate the strength-modulated spike-frequency characteristics of biological neurons. A three-layer spiking neural network with input neurons comprising these highly tunable humidity perception neurons shows an accuracy of 92.68% in lung-disease diagnosis. This study paves the way for developing bioinspired self-assembly strategies to construct neuromorphic perception systems, bridging the gap between artificial and biological sensing and processing paradigms.

Abstract Image

开发由自组装肽膜晶体管组成的生物电压操作湿度感觉神经元
仿生湿度传感器为早期肺病诊断中的呼吸监测提供了一种低功耗方法。然而,在微型化和能效之间取得平衡仍是一项挑战。本研究通过引入一种生物启发湿度传感神经元来解决这一问题,该神经元由具有独特质子耦合离子传输功能的自组装多肽纳米线(NW)忆阻器组成。由于该系统中的纳米线和富含酪氨酸(Tyr)的多肽具有氧化还原活性,因此所提出的神经元显示出较低的Ag+活化能,从而促进了超低电场驱动的阈值切换和较高的能量效率。此外,由于 Tyr 中的酚羟基具有亲水性,系统中的 Ag+ 迁移可由质子源控制,从而实现了基于湿度的忆阻器电导状态控制。此外,还提出了一种基于忆阻器的神经形态感知神经元,它能将湿度信号编码成尖峰信号。这种神经元的尖峰特性可以通过调制来模拟生物神经元的强度调制尖峰频率特性。由这些高度可调湿度感知神经元组成的三层尖峰神经网络的输入神经元在肺部疾病诊断中的准确率高达 92.68%。这项研究为开发生物启发自组装策略以构建神经形态感知系统铺平了道路,在人工和生物传感与处理范例之间架起了一座桥梁。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信