Hendrik H. Heenen, Hemanth S. Pillai, Karsten Reuter, Vanessa J. Bukas
{"title":"Exploring mesoscopic mass transport effects on electrocatalytic selectivity","authors":"Hendrik H. Heenen, Hemanth S. Pillai, Karsten Reuter, Vanessa J. Bukas","doi":"10.1038/s41929-024-01177-6","DOIUrl":null,"url":null,"abstract":"Electrocatalytic selectivity is often discussed at the atomic level on the basis of the active site, while ignoring more subtle effects of mesoscopic mass transport. Here we show how transport controls selectivity through the exchange of surface-bound reaction intermediates between the electrode and bulk electrolyte. We argue that the arising kinetic competition changes with the catalyst’s surface area and can become relevant for technologically important reactions including, for example, different products during the electrochemical CO2 reduction on Cu-based catalysts. Combining microkinetic and transport modelling in a multi-scale approach, we specifically explore and quantify this effect for various showcase examples in the experimental literature. Despite its simplicity, our model correctly reproduces selectivity trends with respect to catalyst roughness on all meso-, micro- and atomic scales. The resulting insight provides an alternative or, at least, complementary explanation to changes in electrocatalytic selectivity that have otherwise been attributed to nano-structuring of active sites or electronic effects due to doping or alloying. Mesoscopic mass transport is often ignored but it can influence electrocatalytic processes. This Analysis introduces a simple multi-scale model that couples diffusion to electrochemical surface kinetics and shows how mesoscopic mass transport determines product selectivity through catalyst morphology.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":null,"pages":null},"PeriodicalIF":42.8000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-024-01177-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01177-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalytic selectivity is often discussed at the atomic level on the basis of the active site, while ignoring more subtle effects of mesoscopic mass transport. Here we show how transport controls selectivity through the exchange of surface-bound reaction intermediates between the electrode and bulk electrolyte. We argue that the arising kinetic competition changes with the catalyst’s surface area and can become relevant for technologically important reactions including, for example, different products during the electrochemical CO2 reduction on Cu-based catalysts. Combining microkinetic and transport modelling in a multi-scale approach, we specifically explore and quantify this effect for various showcase examples in the experimental literature. Despite its simplicity, our model correctly reproduces selectivity trends with respect to catalyst roughness on all meso-, micro- and atomic scales. The resulting insight provides an alternative or, at least, complementary explanation to changes in electrocatalytic selectivity that have otherwise been attributed to nano-structuring of active sites or electronic effects due to doping or alloying. Mesoscopic mass transport is often ignored but it can influence electrocatalytic processes. This Analysis introduces a simple multi-scale model that couples diffusion to electrochemical surface kinetics and shows how mesoscopic mass transport determines product selectivity through catalyst morphology.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.