{"title":"Shaping human brain development and vulnerability through alternative splicing.","authors":"Francisco Aya, Juan Valcárcel","doi":"10.1016/j.xgen.2024.100584","DOIUrl":null,"url":null,"abstract":"<p><p>Alternative splicing contributes to shaping lineage-specific gene expression and phenotypes. In this issue of Cell Genomics, Recinos, Bao, Wang, et al.<sup>1</sup> report that the balance between splicing isoforms of the microtubule-associated protein Tau in the brain is differentially regulated among primates by the RNA-binding protein MBNL2, with consequences for protein aggregation and neurodegeneration in humans.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"4 6","pages":"100584"},"PeriodicalIF":11.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228946/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alternative splicing contributes to shaping lineage-specific gene expression and phenotypes. In this issue of Cell Genomics, Recinos, Bao, Wang, et al.1 report that the balance between splicing isoforms of the microtubule-associated protein Tau in the brain is differentially regulated among primates by the RNA-binding protein MBNL2, with consequences for protein aggregation and neurodegeneration in humans.