Jin Zhang, Nan Ma, Zhixuan Wu, Cheng Wang, Yongqiang Yao
{"title":"Intelligent control of self-driving vehicles based on adaptive sampling supervised actor-critic and human driving experience.","authors":"Jin Zhang, Nan Ma, Zhixuan Wu, Cheng Wang, Yongqiang Yao","doi":"10.3934/mbe.2024267","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the complexity of the driving environment and the dynamics of the behavior of traffic participants, self-driving in dense traffic flow is very challenging. Traditional methods usually rely on predefined rules, which are difficult to adapt to various driving scenarios. Deep reinforcement learning (DRL) shows advantages over rule-based methods in complex self-driving environments, demonstrating the great potential of intelligent decision-making. However, one of the problems of DRL is the inefficiency of exploration; typically, it requires a lot of trial and error to learn the optimal policy, which leads to its slow learning rate and makes it difficult for the agent to learn well-performing decision-making policies in self-driving scenarios. Inspired by the outstanding performance of supervised learning in classification tasks, we propose a self-driving intelligent control method that combines human driving experience and adaptive sampling supervised actor-critic algorithm. Unlike traditional DRL, we modified the learning process of the policy network by combining supervised learning and DRL and adding human driving experience to the learning samples to better guide the self-driving vehicle to learn the optimal policy through human driving experience and real-time human guidance. In addition, in order to make the agent learn more efficiently, we introduced real-time human guidance in its learning process, and an adaptive balanced sampling method was designed for improving the sampling performance. We also designed the reward function in detail for different evaluation indexes such as traffic efficiency, which further guides the agent to learn the self-driving intelligent control policy in a better way. The experimental results show that the method is able to control vehicles in complex traffic environments for self-driving tasks and exhibits better performance than other DRL methods.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024267","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the complexity of the driving environment and the dynamics of the behavior of traffic participants, self-driving in dense traffic flow is very challenging. Traditional methods usually rely on predefined rules, which are difficult to adapt to various driving scenarios. Deep reinforcement learning (DRL) shows advantages over rule-based methods in complex self-driving environments, demonstrating the great potential of intelligent decision-making. However, one of the problems of DRL is the inefficiency of exploration; typically, it requires a lot of trial and error to learn the optimal policy, which leads to its slow learning rate and makes it difficult for the agent to learn well-performing decision-making policies in self-driving scenarios. Inspired by the outstanding performance of supervised learning in classification tasks, we propose a self-driving intelligent control method that combines human driving experience and adaptive sampling supervised actor-critic algorithm. Unlike traditional DRL, we modified the learning process of the policy network by combining supervised learning and DRL and adding human driving experience to the learning samples to better guide the self-driving vehicle to learn the optimal policy through human driving experience and real-time human guidance. In addition, in order to make the agent learn more efficiently, we introduced real-time human guidance in its learning process, and an adaptive balanced sampling method was designed for improving the sampling performance. We also designed the reward function in detail for different evaluation indexes such as traffic efficiency, which further guides the agent to learn the self-driving intelligent control policy in a better way. The experimental results show that the method is able to control vehicles in complex traffic environments for self-driving tasks and exhibits better performance than other DRL methods.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).