{"title":"Numerical and graphical simulation of the non-linear fractional dynamical system of bone mineralization.","authors":"Ritu Agarwal, Pooja Airan, Mohammad Sajid","doi":"10.3934/mbe.2024227","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of the present study was to improve our understanding of the complex biological process of bone mineralization by performing mathematical modeling with the Caputo-Fabrizio fractional operator. To obtain a better understanding of Komarova's bone mineralization process, we have thoroughly examined the boundedness, existence, and uniqueness of solutions and stability analysis within this framework. To determine how model parameters affect the behavior of the system, sensitivity analysis was carried out. Furthermore, the fractional Adams-Bashforth method has been used to carry out numerical and graphical simulations. Our work is significant owing to its comparison of fractional- and integer-order models, which provides novel insight into the effectiveness of fractional operators in representing the complex dynamics of bone mineralization.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 4","pages":"5138-5163"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024227","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of the present study was to improve our understanding of the complex biological process of bone mineralization by performing mathematical modeling with the Caputo-Fabrizio fractional operator. To obtain a better understanding of Komarova's bone mineralization process, we have thoroughly examined the boundedness, existence, and uniqueness of solutions and stability analysis within this framework. To determine how model parameters affect the behavior of the system, sensitivity analysis was carried out. Furthermore, the fractional Adams-Bashforth method has been used to carry out numerical and graphical simulations. Our work is significant owing to its comparison of fractional- and integer-order models, which provides novel insight into the effectiveness of fractional operators in representing the complex dynamics of bone mineralization.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).