Co-occurrence word model for news media hotspot mining-text mining method design.

IF 2.6 4区 工程技术 Q1 Mathematics
Xinyun Zhang, Tao Ding
{"title":"Co-occurrence word model for news media hotspot mining-text mining method design.","authors":"Xinyun Zhang, Tao Ding","doi":"10.3934/mbe.2024238","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, with the rapid growth of online media, more people are obtaining information from it. However, traditional hotspot mining algorithms cannot achieve precise and fast control of hot topics. Aiming at the problem of poor accuracy and timeliness in current news media hotspot mining methods, this paper proposes a hotspot mining method based on the co-occurrence word model. First, a new co-occurrence word model based on word weight is proposed. Then, for key phrase extraction, a hotspot mining algorithm based on the co-occurrence word model and improved smooth inverse frequency rank (SIFRANK) is designed. Finally, the Spark computing framework is introduced to improve the computing efficiency. The experimental outcomes expresses that the new word discovery algorithm discovered 16871 and 17921 new words in the Weibo Short News and Weibo Short Text datasets respectively. The heat weight values of the keywords obtained by the improved SIFRANK reaches 0.9356, 0.9991, and 0.6117. In the Covid19 Tweets dataset, the accuracy is 0.6223, the recall is 0.7015, and the F1 value is 0.6605. In the President-elects Tweets dataset, the accuracy is 0.6418, the recall is 0.7162, and the F1 value is 0.6767. After applying the Spark computing framework, the running speed has significantly improved. The text mining news media hotspot mining method based on the co-occurrence word model proposed in this study has improved the accuracy and efficiency of mining hot topics, and has great practical significance.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 4","pages":"5411-5429"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024238","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, with the rapid growth of online media, more people are obtaining information from it. However, traditional hotspot mining algorithms cannot achieve precise and fast control of hot topics. Aiming at the problem of poor accuracy and timeliness in current news media hotspot mining methods, this paper proposes a hotspot mining method based on the co-occurrence word model. First, a new co-occurrence word model based on word weight is proposed. Then, for key phrase extraction, a hotspot mining algorithm based on the co-occurrence word model and improved smooth inverse frequency rank (SIFRANK) is designed. Finally, the Spark computing framework is introduced to improve the computing efficiency. The experimental outcomes expresses that the new word discovery algorithm discovered 16871 and 17921 new words in the Weibo Short News and Weibo Short Text datasets respectively. The heat weight values of the keywords obtained by the improved SIFRANK reaches 0.9356, 0.9991, and 0.6117. In the Covid19 Tweets dataset, the accuracy is 0.6223, the recall is 0.7015, and the F1 value is 0.6605. In the President-elects Tweets dataset, the accuracy is 0.6418, the recall is 0.7162, and the F1 value is 0.6767. After applying the Spark computing framework, the running speed has significantly improved. The text mining news media hotspot mining method based on the co-occurrence word model proposed in this study has improved the accuracy and efficiency of mining hot topics, and has great practical significance.

新闻媒体热点挖掘的共生词模型--文本挖掘方法设计。
当前,随着网络媒体的快速发展,越来越多的人从中获取信息。然而,传统的热点挖掘算法无法实现对热点话题的精准、快速把控。针对目前新闻媒体热点挖掘方法准确性和时效性较差的问题,本文提出了一种基于共现词模型的热点挖掘方法。首先,提出了一种基于词权重的新共现词模型。然后,针对关键短语的提取,设计了一种基于共现词模型和改进的平滑反频度秩(SIFRANK)的热点挖掘算法。最后,引入了 Spark 计算框架以提高计算效率。实验结果表明,新词发现算法在微博短消息和微博短文数据集中分别发现了 16871 和 17921 个新词。改进后的 SIFRANK 得到的关键词热权重值分别达到 0.9356、0.9991 和 0.6117。在 Covid19 微博数据集中,准确率为 0.6223,召回率为 0.7015,F1 值为 0.6605。当选总统推文数据集的准确率为 0.6418,召回率为 0.7162,F1 值为 0.6767。应用 Spark 计算框架后,运行速度明显提高。本研究提出的基于共现词模型的文本挖掘新闻媒体热点的方法提高了挖掘热点话题的准确性和效率,具有重要的现实意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信