Direct comparison of anti-inflammatory effects of 14-, 15-, and 16-membered macrolide antibiotics in experimental inflammation model induced by carrageenan in rats.
K Taguchi, V T G Chuang, H Ogino, R Hara, O Iketani, Y Enoki, J Kizu, S Hori, K Matsumoto
{"title":"Direct comparison of anti-inflammatory effects of 14-, 15-, and 16-membered macrolide antibiotics in experimental inflammation model induced by carrageenan in rats.","authors":"K Taguchi, V T G Chuang, H Ogino, R Hara, O Iketani, Y Enoki, J Kizu, S Hori, K Matsumoto","doi":"10.1691/ph.2024.3667","DOIUrl":null,"url":null,"abstract":"<p><p>Some macrolide antibiotics, which share a basic lactone ring structure, also exhibit anti-inflammatory actions in addition to their antibacterial activities. However, no study has directly compared anti-inflammatory effects on acute inflammation among macrolide antibiotics with the distinct size of the lactone ring. In this study, we evaluated and compared the anti-inflammatory activities of four 14-membered macrolides (erythromycin, clarithromycin, roxithromycin, oleandomycin), one 15-membered macrolide (azithromycin), and three 16-membered macrolides (midecamycin, josamycin, leucomycin) using a rat carrageenan-induced footpad edema model. All macrolide antibiotics were intraperitoneally administered to rats one hour before the induction of inflammatory edema with 1% λ -carrageenan. The anti-inflammatory effects on acute inflammation were evaluated by changing the edema volume. All 14-membered and 15-membered macrolide antibiotics significantly suppressed the development of edema. Conversely, none of the 16-membered macrolide antibiotics inhibited the growth of edema. In conclusion, compared to 16-membered macrolide antibiotics, 14-membered and 15-membered macrolide antibiotics have stronger anti-inflammatory effects. Further research should be done to determine why different lactone ring sizes should have distinct anti-inflammatory effects.</p>","PeriodicalId":20145,"journal":{"name":"Pharmazie","volume":"79 3","pages":"64-66"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1691/ph.2024.3667","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Some macrolide antibiotics, which share a basic lactone ring structure, also exhibit anti-inflammatory actions in addition to their antibacterial activities. However, no study has directly compared anti-inflammatory effects on acute inflammation among macrolide antibiotics with the distinct size of the lactone ring. In this study, we evaluated and compared the anti-inflammatory activities of four 14-membered macrolides (erythromycin, clarithromycin, roxithromycin, oleandomycin), one 15-membered macrolide (azithromycin), and three 16-membered macrolides (midecamycin, josamycin, leucomycin) using a rat carrageenan-induced footpad edema model. All macrolide antibiotics were intraperitoneally administered to rats one hour before the induction of inflammatory edema with 1% λ -carrageenan. The anti-inflammatory effects on acute inflammation were evaluated by changing the edema volume. All 14-membered and 15-membered macrolide antibiotics significantly suppressed the development of edema. Conversely, none of the 16-membered macrolide antibiotics inhibited the growth of edema. In conclusion, compared to 16-membered macrolide antibiotics, 14-membered and 15-membered macrolide antibiotics have stronger anti-inflammatory effects. Further research should be done to determine why different lactone ring sizes should have distinct anti-inflammatory effects.
期刊介绍:
The journal DiePharmazie publishs reviews, experimental studies, letters to the editor, as well as book reviews.
The following fields of pharmacy are covered:
Pharmaceutical and medicinal chemistry;
Pharmaceutical analysis and drug control;
Pharmaceutical technolgy;
Biopharmacy (biopharmaceutics, pharmacokinetics, biotransformation);
Experimental and clinical pharmacology;
Pharmaceutical biology (pharmacognosy);
Clinical pharmacy;
History of pharmacy.