Visualization of the existence of growth hormone secretagogue receptor in the rat nucleus accumbens.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Seohyeon Lee, Wen Ting Cai, Hyung Shin Yoon, Jeong-Hoon Kim
{"title":"Visualization of the existence of growth hormone secretagogue receptor in the rat nucleus accumbens.","authors":"Seohyeon Lee, Wen Ting Cai, Hyung Shin Yoon, Jeong-Hoon Kim","doi":"10.1186/s13041-024-01109-2","DOIUrl":null,"url":null,"abstract":"<p><p>The potential role of the ghrelin receptor, also known as the growth hormone secretagogue receptor (GHSR), within the nucleus accumbens (NAcc) in regulating drug addiction and feeding has been documented; however, the pattern of its expression in this site remains elusive. In this study, we characterized the expression patterns of GHSR1a and 1b, two subtypes of GHSRs, within the NAcc of the rat brain by immunohistochemistry. We visually detected GHSR signals, for the first time, at the protein level in the NAcc in which they were mostly expressed in neurons including both medium spiny neurons (MSNs) and non-MSNs. Furthermore, GHSR1a was found expressed as localized near the cellular membrane or some in the cytoplasm, whereas GHSR1b expressed solely throughout the large cytoplasmic area. The existence and subcellular expression pattern of GHSRs in the NAcc identified in this study will contribute to improving our understanding about the role of GHSR-mediated neurosignaling in feeding and drug addiction.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177452/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-024-01109-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The potential role of the ghrelin receptor, also known as the growth hormone secretagogue receptor (GHSR), within the nucleus accumbens (NAcc) in regulating drug addiction and feeding has been documented; however, the pattern of its expression in this site remains elusive. In this study, we characterized the expression patterns of GHSR1a and 1b, two subtypes of GHSRs, within the NAcc of the rat brain by immunohistochemistry. We visually detected GHSR signals, for the first time, at the protein level in the NAcc in which they were mostly expressed in neurons including both medium spiny neurons (MSNs) and non-MSNs. Furthermore, GHSR1a was found expressed as localized near the cellular membrane or some in the cytoplasm, whereas GHSR1b expressed solely throughout the large cytoplasmic area. The existence and subcellular expression pattern of GHSRs in the NAcc identified in this study will contribute to improving our understanding about the role of GHSR-mediated neurosignaling in feeding and drug addiction.

大鼠脑核中生长激素分泌受体的可视化。
胃泌素受体又称生长激素分泌受体(GHSR),它在大鼠脑核(NAcc)中调节药物成瘾和进食的潜在作用已被证实;然而,它在该部位的表达模式却仍然难以捉摸。在这项研究中,我们通过免疫组化鉴定了 GHSR1a 和 1b 这两种亚型 GHSR 在大鼠大脑 NAcc 中的表达模式。我们首次在蛋白水平上直观地检测到 GHSR 信号在 NAcc 中的表达,它们主要在神经元(包括中刺神经元(MSN)和非中刺神经元)中表达。此外,还发现 GHSR1a 在细胞膜附近或部分细胞质中表达,而 GHSR1b 仅在整个大细胞质区域表达。本研究发现的GHSR在NAcc中的存在和亚细胞表达模式将有助于加深我们对GHSR介导的神经信号转导在进食和药物成瘾中的作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信