Non-interchangeable functions of efflux transporters of Pseudomonas aeruginosa in survival under infection-associated stress.

IF 2.7 3区 生物学 Q3 MICROBIOLOGY
Journal of Bacteriology Pub Date : 2024-07-25 Epub Date: 2024-06-14 DOI:10.1128/jb.00054-24
Justyna W Adamiak, Laiba Ajmal, Helen I Zgurskaya
{"title":"Non-interchangeable functions of efflux transporters of <i>Pseudomonas aeruginosa</i> in survival under infection-associated stress.","authors":"Justyna W Adamiak, Laiba Ajmal, Helen I Zgurskaya","doi":"10.1128/jb.00054-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pseudomonas aeruginosa</i> is a challenging opportunistic pathogen due to its intrinsic and acquired mechanisms of antibiotic resistance. A large repertoire of efflux transporters actively expels antibiotics, toxins, and metabolites from cells and enables growth of <i>P. aeruginosa</i> in diverse environments. In this study, we analyzed the roles of representative efflux pumps from the Resistance-Nodulation-Division (RND), Major Facilitator Superfamily (MFS), and Small Multidrug Resistance (SMR) families of proteins in the susceptibility of <i>P. aeruginosa</i> to antibiotics and bacterial growth under stresses imposed by human hosts during bacterial infections: an elevated temperature, osmotic stress, low iron, bile salts, and acidic pH. We selected five RND pumps MexAB-OprM, MexEF-OprN, MexCD-OprJ, MuxABC-OpmB, and TriABC-OpmH that differ in their substrate specificities and expression profiles, two MFS efflux pumps PA3136-3137 and PA5158-5160 renamed here into MfsAB and MfsCD-OpmG, respectively, and an SMR efflux transporter PA1540-1541 (MdtJI). We found that the most promiscuous RND pumps such as MexEF-OprN and MexAB-OprM are integrated into diverse survival mechanisms and enable <i>P. aeruginosa</i> growth under various stresses. MuxABC-OpmB and TriABC-OpmH pumps with narrower substrate spectra are beneficial only in the presence of the iron chelator 2,2'-dipyridyl and bile salts, respectively. MFS pumps do not contribute to antibiotic efflux but play orthogonal roles in acidic pH, low iron, and in the presence of bile salts. In contrast, MdtJI protects against polycationic antibiotics but does not contribute to survival under stress. Thus, efflux pumps play specific, non-interchangeable functions in <i>P. aeruginosa</i> cell physiology and bacterial survival under stresses.</p><p><strong>Importance: </strong>The role of multidrug efflux pumps in the intrinsic and clinical levels of antibiotic resistance in <i>Pseudomonas aeruginosa</i> and other gram-negative bacteria is well-established. Their functions in bacterial physiology, however, remain unclear. The <i>P. aeruginosa</i> genome comprises an arsenal of efflux pumps from different protein families, the substrate specificities of which are typically assessed by measuring their impact on susceptibility to antibiotics. In this study, we analyzed how deletions and overproductions of efflux pumps affect <i>P. aeruginosa</i> growth under human-infection-induced stresses. Our results show that the physiological functions of multidrug efflux pumps are non-redundant and essential for the survival of this important human pathogen under stress.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323973/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00054-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pseudomonas aeruginosa is a challenging opportunistic pathogen due to its intrinsic and acquired mechanisms of antibiotic resistance. A large repertoire of efflux transporters actively expels antibiotics, toxins, and metabolites from cells and enables growth of P. aeruginosa in diverse environments. In this study, we analyzed the roles of representative efflux pumps from the Resistance-Nodulation-Division (RND), Major Facilitator Superfamily (MFS), and Small Multidrug Resistance (SMR) families of proteins in the susceptibility of P. aeruginosa to antibiotics and bacterial growth under stresses imposed by human hosts during bacterial infections: an elevated temperature, osmotic stress, low iron, bile salts, and acidic pH. We selected five RND pumps MexAB-OprM, MexEF-OprN, MexCD-OprJ, MuxABC-OpmB, and TriABC-OpmH that differ in their substrate specificities and expression profiles, two MFS efflux pumps PA3136-3137 and PA5158-5160 renamed here into MfsAB and MfsCD-OpmG, respectively, and an SMR efflux transporter PA1540-1541 (MdtJI). We found that the most promiscuous RND pumps such as MexEF-OprN and MexAB-OprM are integrated into diverse survival mechanisms and enable P. aeruginosa growth under various stresses. MuxABC-OpmB and TriABC-OpmH pumps with narrower substrate spectra are beneficial only in the presence of the iron chelator 2,2'-dipyridyl and bile salts, respectively. MFS pumps do not contribute to antibiotic efflux but play orthogonal roles in acidic pH, low iron, and in the presence of bile salts. In contrast, MdtJI protects against polycationic antibiotics but does not contribute to survival under stress. Thus, efflux pumps play specific, non-interchangeable functions in P. aeruginosa cell physiology and bacterial survival under stresses.

Importance: The role of multidrug efflux pumps in the intrinsic and clinical levels of antibiotic resistance in Pseudomonas aeruginosa and other gram-negative bacteria is well-established. Their functions in bacterial physiology, however, remain unclear. The P. aeruginosa genome comprises an arsenal of efflux pumps from different protein families, the substrate specificities of which are typically assessed by measuring their impact on susceptibility to antibiotics. In this study, we analyzed how deletions and overproductions of efflux pumps affect P. aeruginosa growth under human-infection-induced stresses. Our results show that the physiological functions of multidrug efflux pumps are non-redundant and essential for the survival of this important human pathogen under stress.

铜绿假单胞菌的外排转运体在感染相关压力下的生存过程中具有不可互换的功能。
铜绿假单胞菌因其固有的和后天获得的抗生素耐药性机制而成为一种具有挑战性的机会性病原体。大量的外排转运体积极地将抗生素、毒素和代谢物排出细胞,使铜绿假单胞菌能够在不同的环境中生长。在本研究中,我们分析了抗性-结节-分裂(RND)、主要促进剂超家族(MFS)和小型多药耐药性(SMR)蛋白家族中具有代表性的外排泵在铜绿假单胞菌对抗生素的敏感性以及细菌感染期间人类宿主施加的压力(温度升高、渗透压力、低铁、胆汁盐和酸性 pH 值)下细菌生长中的作用。我们选择了底物特异性和表达谱不同的五个 RND 泵 MexAB-OprM、MexEF-OprN、MexCD-OprJ、MuxABC-OpmB 和 TriABC-OpmH,两个 MFS 外排泵 PA3136-3137 和 PA5158-5160(在此分别重命名为 MfsAB 和 MfsCD-OpmG),以及一个 SMR 外排转运体 PA1540-1541 (MdtJI)。我们发现最杂乱的 RND 泵,如 MexEF-OprN 和 MexAB-OprM,融入了多种生存机制,使铜绿微囊藻在各种压力下都能生长。底物谱较窄的 MuxABC-OpmB 和 TriABC-OpmH 泵分别只在铁螯合剂 2,2'-dipyridyl 和胆汁盐存在时才有益。MFS 泵无助于抗生素外流,但在酸性 pH 值、低铁和有胆汁盐存在时发挥正交作用。相反,MdtJI 可抵御多阳离子抗生素,但无助于在压力下存活。因此,外排泵在铜绿微囊藻细胞生理和细菌在压力下的生存中发挥着特定的、不可互换的功能:多药外排泵在铜绿假单胞菌和其他革兰氏阴性菌的内在和临床抗生素耐药性中的作用已得到公认。然而,它们在细菌生理学中的功能仍不清楚。铜绿假单胞菌的基因组包括来自不同蛋白家族的外排泵,其底物特异性通常通过测量它们对抗生素敏感性的影响来评估。在这项研究中,我们分析了外排泵的缺失和过量产生如何影响铜绿假单胞菌在人类感染诱导的压力下的生长。我们的研究结果表明,多药外排泵的生理功能是非冗余的,对于这种重要的人类病原体在压力下的生存至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信