HDAC3 inhibitors: a patent review of their broad-spectrum applications as therapeutic agents.

IF 5.4 2区 医学 Q1 CHEMISTRY, MEDICINAL
Expert Opinion on Therapeutic Patents Pub Date : 2024-04-01 Epub Date: 2024-06-25 DOI:10.1080/13543776.2024.2363890
Thabo Brighton Makgoba, Erika Kapp, Samuel Egieyeh, Jacques Joubert
{"title":"HDAC3 inhibitors: a patent review of their broad-spectrum applications as therapeutic agents.","authors":"Thabo Brighton Makgoba, Erika Kapp, Samuel Egieyeh, Jacques Joubert","doi":"10.1080/13543776.2024.2363890","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Histone deacetylases (HDACs) are a class of zinc-dependent enzymes. They maintain acetylation homeostasis, with numerous biological functions and are associated with many diseases. HDAC3 strictly requires multi-subunit complex formation for activity. It is associated with the progression of numerous non-communicable diseases. Its widespread involvement in diseases makes it an epigenetic drug target. Preexisting HDAC3 inhibitors have many uses, highlighting the need for continued research in the discovery of HDAC3-selective inhibitors.</p><p><strong>Area covered: </strong>This review provides an overview of 24 patents published from 2010 to 2023, focusing on compounds that inhibit the HDAC3 isoenzyme.</p><p><strong>Expert opinion: </strong>HDAC3-selective inhibitors - pivotal for pharmacological applications, as single or combination therapies - are gaining traction as a strategy to move away from complications laden pan-HDAC inhibitors. Moreover, there is an unmet need for HDAC3 inhibitors with alternative zinc-binding groups (ZBGs) because some preexisting ZBGs have limitations related to toxicity and side effects. Difficulties in achieving HDAC3 selectivity may be due to isoform selectivity. However, advancements in computer-aided drug design and experimental data of HDAC3 3D co-crystallized models could lead to the discovery of novel HDAC3-selective inhibitors, which bear alternative ZBGs with balanced selectivity for HDAC3 and potency.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"273-295"},"PeriodicalIF":5.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Patents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543776.2024.2363890","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Histone deacetylases (HDACs) are a class of zinc-dependent enzymes. They maintain acetylation homeostasis, with numerous biological functions and are associated with many diseases. HDAC3 strictly requires multi-subunit complex formation for activity. It is associated with the progression of numerous non-communicable diseases. Its widespread involvement in diseases makes it an epigenetic drug target. Preexisting HDAC3 inhibitors have many uses, highlighting the need for continued research in the discovery of HDAC3-selective inhibitors.

Area covered: This review provides an overview of 24 patents published from 2010 to 2023, focusing on compounds that inhibit the HDAC3 isoenzyme.

Expert opinion: HDAC3-selective inhibitors - pivotal for pharmacological applications, as single or combination therapies - are gaining traction as a strategy to move away from complications laden pan-HDAC inhibitors. Moreover, there is an unmet need for HDAC3 inhibitors with alternative zinc-binding groups (ZBGs) because some preexisting ZBGs have limitations related to toxicity and side effects. Difficulties in achieving HDAC3 selectivity may be due to isoform selectivity. However, advancements in computer-aided drug design and experimental data of HDAC3 3D co-crystallized models could lead to the discovery of novel HDAC3-selective inhibitors, which bear alternative ZBGs with balanced selectivity for HDAC3 and potency.

HDAC3 抑制剂:关于其作为治疗剂的广泛应用的专利综述。
简介组蛋白去乙酰化酶(HDACs)是一类锌依赖酶。它们维持乙酰化平衡,具有多种生物学功能,并与许多疾病相关。HDAC3 的活性严格需要多亚基复合物的形成。它与许多非传染性疾病的进展有关。HDAC3 与疾病的广泛关系使其成为表观遗传药物的靶点。现有的 HDAC3 抑制剂有多种用途,因此需要继续研究发现 HDAC3 选择性抑制剂:本综述概述了 2010-2023 年间发表的 24 项专利,重点关注抑制 HDAC3 同工酶的化合物:HDAC3选择性抑制剂--作为单药或联合疗法的关键药理应用--作为一种摒弃充满并发症的泛HDAC抑制剂的策略,正受到越来越多的关注。此外,对具有替代锌结合基团(ZBG)的 HDAC3 抑制剂的需求尚未得到满足,因为现有的一些 ZBG 具有毒性和副作用方面的局限性。实现 HDAC3 选择性的困难可能是由于同工酶选择性造成的。然而,计算机辅助药物设计的进步和 HDAC3 三维共晶体模型的实验数据可能会导致新型 HDAC3 选择性抑制剂的发现。这些抑制剂具有对 HDAC3 的平衡选择性和效力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
1.50%
发文量
50
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Therapeutic Patents (ISSN 1354-3776 [print], 1744-7674 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on recent pharmaceutical patent claims, providing expert opinion the scope for future development, in the context of the scientific literature. The Editors welcome: Reviews covering recent patent claims on compounds or applications with therapeutic potential, including biotherapeutics and small-molecule agents with specific molecular targets; and patenting trends in a particular therapeutic area Patent Evaluations examining the aims and chemical and biological claims of individual patents Perspectives on issues relating to intellectual property The audience consists of scientists, managers and decision-makers in the pharmaceutical industry and others closely involved in R&D Sample our Bioscience journals, sign in here to start your access, Latest two full volumes FREE to you for 14 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信