Advancing ethanol content determination in hydrogels: non-destructive and operational methods for health and criminal inspections

IF 1.8 4区 化学 Q3 CHEMISTRY, ANALYTICAL
Diego M. de Souza, Lívia de B. Salum, Robiedson R. Damasceno, Pedro J. de Moura Messias, Camila M. Silva, João V. de S. Cardoso, Pedro A. de O. Morais
{"title":"Advancing ethanol content determination in hydrogels: non-destructive and operational methods for health and criminal inspections","authors":"Diego M. de Souza,&nbsp;Lívia de B. Salum,&nbsp;Robiedson R. Damasceno,&nbsp;Pedro J. de Moura Messias,&nbsp;Camila M. Silva,&nbsp;João V. de S. Cardoso,&nbsp;Pedro A. de O. Morais","doi":"10.1007/s44211-024-00617-4","DOIUrl":null,"url":null,"abstract":"<div><p>The significance of accurate determination of ethanol content in hydrogel formulations was accentuated during COVID-19 pandemic coinciding with the heightened demand for sanitizing agents. The present article proposes three robust methodologies for this purpose: Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, and Densitometry with matrix effect correction by Near-Infrared Spectroscopy (NIR). All three methods demonstrated outstanding linearity (<i>R</i><sup>2</sup> ≥ 0.99) and minimal errors (&lt; 1.7%), offering simplicity and operational efficiency. FTIR and Raman, being non-destructive and requiring minimal preparation, enable practical on-site analysis capabilities, underscoring the potential of the spectroscopic methods to expedite health investigations and inspections, empowering on-site ethanol determination, and relieving the burden on official laboratories. Additionally, the densitometry with NIR-based approach showcased superior accuracy and precision compared to spectroscopic methods, meeting validation criteria while offering operational advantages over the costly official distillation-based method. Therefore, it stands as a reliable and reproducible technique for comprehensive health and criminal compliance assessments, making it a compelling alternative for both industry and official laboratories.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":"40 10","pages":"1833 - 1841"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s44211-024-00617-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The significance of accurate determination of ethanol content in hydrogel formulations was accentuated during COVID-19 pandemic coinciding with the heightened demand for sanitizing agents. The present article proposes three robust methodologies for this purpose: Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, and Densitometry with matrix effect correction by Near-Infrared Spectroscopy (NIR). All three methods demonstrated outstanding linearity (R2 ≥ 0.99) and minimal errors (< 1.7%), offering simplicity and operational efficiency. FTIR and Raman, being non-destructive and requiring minimal preparation, enable practical on-site analysis capabilities, underscoring the potential of the spectroscopic methods to expedite health investigations and inspections, empowering on-site ethanol determination, and relieving the burden on official laboratories. Additionally, the densitometry with NIR-based approach showcased superior accuracy and precision compared to spectroscopic methods, meeting validation criteria while offering operational advantages over the costly official distillation-based method. Therefore, it stands as a reliable and reproducible technique for comprehensive health and criminal compliance assessments, making it a compelling alternative for both industry and official laboratories.

Graphical abstract

推进水凝胶中乙醇含量的测定:用于卫生和刑事检查的非破坏性操作方法。
在 COVID-19 大流行期间,随着对消毒剂需求的增加,准确测定水凝胶配方中乙醇含量的重要性更加突出。本文为此提出了三种可靠的方法:傅立叶变换红外光谱法(FTIR)、拉曼光谱法和通过近红外光谱法(NIR)进行基质效应校正的密度测量法。所有这三种方法都表现出卓越的线性(R2 ≥ 0.99)和最小的误差(R2 ≥ 0.99)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Sciences
Analytical Sciences 化学-分析化学
CiteScore
2.90
自引率
18.80%
发文量
232
审稿时长
1 months
期刊介绍: Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods. This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信