A Redox-Active Phenothiazine-based Pd2L4-Type Coordination Cage and Its Isolable Crystalline Polyradical Cations

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. Bin Huang, Manfei Zhou, Qiong-Yan Hong, Meng-Xiang Wu, Prof. Xiao-Li Zhao, Prof. Lin Xu, Prof. En-Qing Gao, Prof. Hai-Bo Yang, Prof. Xueliang Shi
{"title":"A Redox-Active Phenothiazine-based Pd2L4-Type Coordination Cage and Its Isolable Crystalline Polyradical Cations","authors":"Dr. Bin Huang,&nbsp;Manfei Zhou,&nbsp;Qiong-Yan Hong,&nbsp;Meng-Xiang Wu,&nbsp;Prof. Xiao-Li Zhao,&nbsp;Prof. Lin Xu,&nbsp;Prof. En-Qing Gao,&nbsp;Prof. Hai-Bo Yang,&nbsp;Prof. Xueliang Shi","doi":"10.1002/anie.202407279","DOIUrl":null,"url":null,"abstract":"<p>Polyradical cages are of great interest because they show very fascinating physical and chemical properties, but many challenges remain, especially for their synthesis and characterization. Herein, we present the synthesis of a polyradical cation cage <b>1<sup>4</sup></b>⋅<sup><b>+</b></sup> through post-synthetic oxidation of a redox-active phenothiazine-based Pd<sub>2</sub>L<sub>4</sub>-type coordination cage <b>1</b>. It′s worth noting that <b>1</b> exhibits excellent reversible electrochemical and chemical redox activity due to the introduction of a bulky 3,5-di-<i>tert</i>-butyl-4-methoxyphenyl substituent. The generation of <b>1<sup>4</sup></b>⋅<sup><b>+</b></sup> through reversible electrochemical oxidation is investigated by in situ UV/Vis-NIR and EPR spectroelectrochemistry. Meanwhile, chemical oxidation of <b>1</b> can also produce <b>1<sup>4</sup></b>⋅<sup><b>+</b></sup> which can be reversibly reduced back to the original cage <b>1</b>, and the process is monitored by EPR and NMR spectroscopies. Eventually, we succeed in the isolation and single crystal X-ray diffraction analysis of <b>1<sup>4</sup></b>⋅<sup><b>+</b></sup>, whose electronic structure and conformation are distinct to original <b>1</b>. The magnetic susceptibility measurements indicate the predominantly antiferromagnetic interactions between the four phenothiazine radical cations in <b>1<sup>4</sup></b>⋅<sup><b>+</b></sup>. We believe that our study including the facile synthesis methodology and in situ spectroelectrochemistry will shed some light on the synthesis and characterization of novel polyradical systems, opening more perspectives for developing functional supramolecular cages.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 36","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202407279","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyradical cages are of great interest because they show very fascinating physical and chemical properties, but many challenges remain, especially for their synthesis and characterization. Herein, we present the synthesis of a polyradical cation cage 14+ through post-synthetic oxidation of a redox-active phenothiazine-based Pd2L4-type coordination cage 1. It′s worth noting that 1 exhibits excellent reversible electrochemical and chemical redox activity due to the introduction of a bulky 3,5-di-tert-butyl-4-methoxyphenyl substituent. The generation of 14+ through reversible electrochemical oxidation is investigated by in situ UV/Vis-NIR and EPR spectroelectrochemistry. Meanwhile, chemical oxidation of 1 can also produce 14+ which can be reversibly reduced back to the original cage 1, and the process is monitored by EPR and NMR spectroscopies. Eventually, we succeed in the isolation and single crystal X-ray diffraction analysis of 14+, whose electronic structure and conformation are distinct to original 1. The magnetic susceptibility measurements indicate the predominantly antiferromagnetic interactions between the four phenothiazine radical cations in 14+. We believe that our study including the facile synthesis methodology and in situ spectroelectrochemistry will shed some light on the synthesis and characterization of novel polyradical systems, opening more perspectives for developing functional supramolecular cages.

Abstract Image

一种具有氧化还原作用的吩噻嗪基 Pd2L4 型配位笼及其可分离的结晶多辐射阳离子。
多辐射阳离子笼具有非常迷人的物理和化学性质,因此备受关注,但仍存在许多挑战,尤其是在合成和表征方面。在此,我们介绍了通过对具有氧化还原活性的吩噻嗪基 Pd2L4 型配位笼 1 进行后合成氧化而合成的多辐射阳离子笼 14-+。值得注意的是,由于引入了一个笨重的 3,5-二叔丁基-4-甲氧基苯基取代基,1 具有出色的可逆电化学和化学氧化还原活性。通过原位 UV-vis-NIR 和 EPR 光谱电化学研究了通过可逆电化学氧化生成 14-+的过程。同时,1 的化学氧化也能产生 14-+,而 14-+ 又能被可逆地还原回原来的笼子 1,并通过 EPR 和 NMR 光谱监测了这一过程。最终,我们成功地分离出了 14-+,并对其进行了单晶 X 射线衍射分析,其电子结构和构象与原来的 1 截然不同。磁感应强度测量结果表明,14-+ 中的四个吩噻嗪基阳离子之间主要存在反铁磁相互作用。我们相信,我们的研究,包括简易合成方法和原位光谱电化学,将为新型多辐射体系的合成和表征提供一些启示,为开发功能性超分子笼开辟更多的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信