Moiré Engineering of Spin–Orbit Torque by Twisted WS2 Homobilayers

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaorong Liang, Penghao Lv, Yunhai Xiong, Xi Chen, Di Fu, Yiping Feng, Xusheng Wang, Xiang Chen, Guizhou Xu, Erjun Kan, Feng Xu, Haibo Zeng
{"title":"Moiré Engineering of Spin–Orbit Torque by Twisted WS2 Homobilayers","authors":"Xiaorong Liang,&nbsp;Penghao Lv,&nbsp;Yunhai Xiong,&nbsp;Xi Chen,&nbsp;Di Fu,&nbsp;Yiping Feng,&nbsp;Xusheng Wang,&nbsp;Xiang Chen,&nbsp;Guizhou Xu,&nbsp;Erjun Kan,&nbsp;Feng Xu,&nbsp;Haibo Zeng","doi":"10.1002/adma.202313059","DOIUrl":null,"url":null,"abstract":"<p>Artificial moiré superlattices created by stacking 2D crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices are reported to host a number of novel quantum states, their potential for spintronic applications remains largely unexplored. Here, the effective manipulation of spin–orbit torque (SOT) is demonstrated using moiré superlattices in ferromagnetic devices comprised of twisted WS<sub>2</sub>/WS<sub>2</sub> homobilayer (t-WS<sub>2</sub>) and CoFe/Pt thin films by altering twisting angle (<i>θ</i>) and gate voltage. Notably, a substantial enhancement of up to 44.5% is observed in SOT conductivity at <i>θ</i> ≈ 8.3°. Furthermore, compared to the WS<sub>2</sub> monolayer and untwisted WS<sub>2</sub>/WS<sub>2</sub> bilayers, the moiré superlattices in t-WS<sub>2</sub> enable a greater gate-voltage tunability of SOT conductivity. These results are related to the generation of the interfacial moiré magnetic field by the real-space Berry phase in moiré superlattices, which modulates the absorption of the spin-Hall current arising from Pt through the magnetic proximity effect. This study highlights the moiré physics as a new building block for designing enhanced spintronic devices.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202313059","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial moiré superlattices created by stacking 2D crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices are reported to host a number of novel quantum states, their potential for spintronic applications remains largely unexplored. Here, the effective manipulation of spin–orbit torque (SOT) is demonstrated using moiré superlattices in ferromagnetic devices comprised of twisted WS2/WS2 homobilayer (t-WS2) and CoFe/Pt thin films by altering twisting angle (θ) and gate voltage. Notably, a substantial enhancement of up to 44.5% is observed in SOT conductivity at θ ≈ 8.3°. Furthermore, compared to the WS2 monolayer and untwisted WS2/WS2 bilayers, the moiré superlattices in t-WS2 enable a greater gate-voltage tunability of SOT conductivity. These results are related to the generation of the interfacial moiré magnetic field by the real-space Berry phase in moiré superlattices, which modulates the absorption of the spin-Hall current arising from Pt through the magnetic proximity effect. This study highlights the moiré physics as a new building block for designing enhanced spintronic devices.

Abstract Image

扭曲的 WS2 玻纤层对自旋轨道转矩的莫伊里工程。
通过堆叠二维晶体产生的人造摩尔纹超晶格已成为一个强大的平台,具有前所未有的材料工程能力。据报道,摩尔纹超晶格可承载多种新型量子态,但它们在自旋电子应用方面的潜力在很大程度上仍未得到开发。在这里,我们通过改变扭曲角度(θ)和栅极电压,在由扭曲的 WS2/WS2 均质层(t-WS2)和 CoFe/Pt 薄膜组成的铁磁器件中利用摩尔超晶格展示了对自旋轨道力矩(SOT)的有效操纵。值得注意的是,在 θ 约为 8.3° 时,我们观察到 SOT 的电导率大幅提高了 44.5%。此外,与 WS2 单层和未扭曲的 WS2/WS2 双层相比,t-WS2 中的摩尔超晶格使 SOT 导电性的栅极电压可调性更高。我们将这些结果与摩尔纹超晶格中的实空间贝里相产生的界面摩尔纹磁场联系起来,后者通过磁接近效应调节了由铂产生的自旋霍尔电流的吸收。这项研究强调了摩尔纹物理学是设计增强型自旋电子器件的新基石。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信