{"title":"Design of low-cost non-fused ultranarrow-band-gap acceptors for versatile photovoltaic applications","authors":"","doi":"10.1016/j.joule.2024.05.011","DOIUrl":null,"url":null,"abstract":"<div><p><span>Ultranarrow-band-gap organic semiconductors with fully non-fused conjugated structures display great potential for low-cost organic </span>photoelectric devices<span>. Here, we developed two fully non-fused acceptors, namely, A4T-7 and A4T-12, by introducing different alkoxyl side chains on the π-bridges of the non-fused acceptors. The resulting materials demonstrate ultranarrow optical band gaps of 1.15 and 1.21 eV, respectively. Compared with other ultranarrow-band-gap acceptors constructed with fully fused-ring or partially fused-ring structures, the synthetic complexity of the two acceptors is significantly reduced. Specifically, A4T-7, with symmetric alkoxy chains on the π-bridge, exhibits a more planar molecular configuration compared with A4T-12. Notably, the organic photovoltaic<span> cells based on A4T-7 show a power conversion efficiency of 13.3%. Moreover, cells fabricated with a highly transparent active layer, characterized by an average visible transmittance value of approximately 62.7%, achieve an efficiency of 10.7%. These results represent the highest reported efficiencies for cells utilizing fully non-fused acceptors with ultranarrow band gaps.</span></span></p></div>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124002393","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Ultranarrow-band-gap organic semiconductors with fully non-fused conjugated structures display great potential for low-cost organic photoelectric devices. Here, we developed two fully non-fused acceptors, namely, A4T-7 and A4T-12, by introducing different alkoxyl side chains on the π-bridges of the non-fused acceptors. The resulting materials demonstrate ultranarrow optical band gaps of 1.15 and 1.21 eV, respectively. Compared with other ultranarrow-band-gap acceptors constructed with fully fused-ring or partially fused-ring structures, the synthetic complexity of the two acceptors is significantly reduced. Specifically, A4T-7, with symmetric alkoxy chains on the π-bridge, exhibits a more planar molecular configuration compared with A4T-12. Notably, the organic photovoltaic cells based on A4T-7 show a power conversion efficiency of 13.3%. Moreover, cells fabricated with a highly transparent active layer, characterized by an average visible transmittance value of approximately 62.7%, achieve an efficiency of 10.7%. These results represent the highest reported efficiencies for cells utilizing fully non-fused acceptors with ultranarrow band gaps.
期刊介绍:
The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry:
Chemische Berichte
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry
The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.