{"title":"Design of low-cost non-fused ultranarrow-band-gap acceptors for versatile photovoltaic applications","authors":"","doi":"10.1016/j.joule.2024.05.011","DOIUrl":null,"url":null,"abstract":"<div><p><span>Ultranarrow-band-gap organic semiconductors with fully non-fused conjugated structures display great potential for low-cost organic </span>photoelectric devices<span>. Here, we developed two fully non-fused acceptors, namely, A4T-7 and A4T-12, by introducing different alkoxyl side chains on the π-bridges of the non-fused acceptors. The resulting materials demonstrate ultranarrow optical band gaps of 1.15 and 1.21 eV, respectively. Compared with other ultranarrow-band-gap acceptors constructed with fully fused-ring or partially fused-ring structures, the synthetic complexity of the two acceptors is significantly reduced. Specifically, A4T-7, with symmetric alkoxy chains on the π-bridge, exhibits a more planar molecular configuration compared with A4T-12. Notably, the organic photovoltaic<span> cells based on A4T-7 show a power conversion efficiency of 13.3%. Moreover, cells fabricated with a highly transparent active layer, characterized by an average visible transmittance value of approximately 62.7%, achieve an efficiency of 10.7%. These results represent the highest reported efficiencies for cells utilizing fully non-fused acceptors with ultranarrow band gaps.</span></span></p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 8","pages":"Pages 2238-2249"},"PeriodicalIF":38.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124002393","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ultranarrow-band-gap organic semiconductors with fully non-fused conjugated structures display great potential for low-cost organic photoelectric devices. Here, we developed two fully non-fused acceptors, namely, A4T-7 and A4T-12, by introducing different alkoxyl side chains on the π-bridges of the non-fused acceptors. The resulting materials demonstrate ultranarrow optical band gaps of 1.15 and 1.21 eV, respectively. Compared with other ultranarrow-band-gap acceptors constructed with fully fused-ring or partially fused-ring structures, the synthetic complexity of the two acceptors is significantly reduced. Specifically, A4T-7, with symmetric alkoxy chains on the π-bridge, exhibits a more planar molecular configuration compared with A4T-12. Notably, the organic photovoltaic cells based on A4T-7 show a power conversion efficiency of 13.3%. Moreover, cells fabricated with a highly transparent active layer, characterized by an average visible transmittance value of approximately 62.7%, achieve an efficiency of 10.7%. These results represent the highest reported efficiencies for cells utilizing fully non-fused acceptors with ultranarrow band gaps.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.