Serre weights for three-dimensional wildly ramified Galois representations

IF 0.9 1区 数学 Q2 MATHEMATICS
Daniel Le, Bao V. Le Hung, Brandon Levin, Stefano Morra
{"title":"Serre weights for three-dimensional wildly ramified Galois representations","authors":"Daniel Le, Bao V. Le Hung, Brandon Levin, Stefano Morra","doi":"10.2140/ant.2024.18.1221","DOIUrl":null,"url":null,"abstract":"<p>We formulate and prove the weight part of Serre’s conjecture for three-dimensional mod <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> Galois representations under a genericity condition when the field is unramified at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>. This removes the assumption made previously that the representation be tamely ramified at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>. We also prove a version of Breuil’s lattice conjecture and a mod <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> multiplicity one result for the cohomology of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math>-arithmetic manifolds. The key input is a study of the geometry of the Emerton–Gee stacks using the local models we introduced previously (2023). </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"28 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1221","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We formulate and prove the weight part of Serre’s conjecture for three-dimensional mod p Galois representations under a genericity condition when the field is unramified at p. This removes the assumption made previously that the representation be tamely ramified at p. We also prove a version of Breuil’s lattice conjecture and a mod p multiplicity one result for the cohomology of U(3)-arithmetic manifolds. The key input is a study of the geometry of the Emerton–Gee stacks using the local models we introduced previously (2023).

三维野生斜切伽罗瓦表示的塞尔权重
我们提出并证明了三维模 p 伽罗瓦表示的塞雷猜想的权重部分,该猜想的条件是当场在 p 处未ramified 时的通性条件。我们还证明了布雷尔格子猜想的一个版本,以及 U(3)- 算术流形的模 p 倍性一结果。关键的投入是利用我们之前介绍的局部模型研究埃默顿-吉堆栈的几何(2023)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信