{"title":"Combining Igusa’s conjectures on exponential sums and monodromy with semicontinuity of the minimal exponent","authors":"Raf Cluckers, Kien Huu Nguyen","doi":"10.2140/ant.2024.18.1275","DOIUrl":null,"url":null,"abstract":"<p>We combine two of Igusa’s conjectures with recent semicontinuity results by Mustaţă and Popa to form a new, natural conjecture about bounds for exponential sums. These bounds have a deceivingly simple and general formulation in terms of degrees and dimensions only. We provide evidence consisting partly of adaptations of already known results about Igusa’s conjecture on exponential sums, but also some new evidence like for all polynomials in up to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn></math> variables. We show that, in turn, these bounds imply consequences for Igusa’s (strong) monodromy conjecture. The bounds are related to estimates for major arcs appearing in the circle method for local-global principles. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"59 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1275","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We combine two of Igusa’s conjectures with recent semicontinuity results by Mustaţă and Popa to form a new, natural conjecture about bounds for exponential sums. These bounds have a deceivingly simple and general formulation in terms of degrees and dimensions only. We provide evidence consisting partly of adaptations of already known results about Igusa’s conjecture on exponential sums, but also some new evidence like for all polynomials in up to variables. We show that, in turn, these bounds imply consequences for Igusa’s (strong) monodromy conjecture. The bounds are related to estimates for major arcs appearing in the circle method for local-global principles.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.