M. Zhou , X. Tang , B. Xiong , P.W.G. Groot Koerkamp , A.J.A. Aarnink
{"title":"Effectiveness of cooling interventions on heat-stressed dairy cows based on a mechanistic thermoregulatory model","authors":"M. Zhou , X. Tang , B. Xiong , P.W.G. Groot Koerkamp , A.J.A. Aarnink","doi":"10.1016/j.biosystemseng.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>Addressing heat stress in dairy farming is a substantial challenge, and there is an increasing need for efficient cooling systems, even in regions with moderate climates. Accurately predicting the efficacy of diverse cooling options under different climatic conditions is crucial for reducing heat stress in modern high-producing dairy cows, aligning with sustainability goals. This study assessed the effectiveness and feasibility of different cooling measures, including fans, sprinklers with fans, and evaporative air cooling, using a dynamic thermoregulatory model. This 3-node dynamic model was developed based on recent animal data simulating the processes of dairy cows' physiological regulation and heat dissipation under various environmental conditions. The cooling methods were based on two principles: enhancing heat loss from cows using fans with/without sprinklers; lowering the ambient temperature by evaporative air cooling. The predicted results were discussed and partly validated using the experimental data from the literature. The predictions indicated that fan cooling alone was effective in ambient temperatures below 26 °C, while higher temperatures required a combination of fans and sprinklers for effective heat stress alleviation. Consideration of individual cow characteristics and environmental factors, including fan speed and wetting area, is crucial for optimal cooling. In regions with high relative humidity, evaporative air cooling could be counterproductive to some extent. The model's predictions largely aligned with experimental data, demonstrating its capability to forecast cooling effects under various climatic conditions. Future model improvements included refining calculations for water holding capacity, wetted skin area, and dry time, depending on the influence of spraying time and rate.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1537511024001375/pdfft?md5=e7291d2646f743319db1a4a5180643ae&pid=1-s2.0-S1537511024001375-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024001375","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Addressing heat stress in dairy farming is a substantial challenge, and there is an increasing need for efficient cooling systems, even in regions with moderate climates. Accurately predicting the efficacy of diverse cooling options under different climatic conditions is crucial for reducing heat stress in modern high-producing dairy cows, aligning with sustainability goals. This study assessed the effectiveness and feasibility of different cooling measures, including fans, sprinklers with fans, and evaporative air cooling, using a dynamic thermoregulatory model. This 3-node dynamic model was developed based on recent animal data simulating the processes of dairy cows' physiological regulation and heat dissipation under various environmental conditions. The cooling methods were based on two principles: enhancing heat loss from cows using fans with/without sprinklers; lowering the ambient temperature by evaporative air cooling. The predicted results were discussed and partly validated using the experimental data from the literature. The predictions indicated that fan cooling alone was effective in ambient temperatures below 26 °C, while higher temperatures required a combination of fans and sprinklers for effective heat stress alleviation. Consideration of individual cow characteristics and environmental factors, including fan speed and wetting area, is crucial for optimal cooling. In regions with high relative humidity, evaporative air cooling could be counterproductive to some extent. The model's predictions largely aligned with experimental data, demonstrating its capability to forecast cooling effects under various climatic conditions. Future model improvements included refining calculations for water holding capacity, wetted skin area, and dry time, depending on the influence of spraying time and rate.
期刊介绍:
Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.