Hai-Hui Wang , Shamima Aktar , Feng-Feng Yang , Bogdan Z. Dlugogorski , Chao-Peng Wu
{"title":"Theoretical evaluation on the thermal response of coal during the conventional crossing-point temperature measurement","authors":"Hai-Hui Wang , Shamima Aktar , Feng-Feng Yang , Bogdan Z. Dlugogorski , Chao-Peng Wu","doi":"10.1016/j.ijthermalsci.2024.109181","DOIUrl":null,"url":null,"abstract":"<div><p>The crossing-point temperature measurement is a classical thermal test method for ranking the propensity of coal towards self-heating and spontaneous combustion. Despite its longstanding use, it is still considered an empirical approach due to a lack of understanding on its working mechanism, preventing its wide use and standardization globally. In this paper, efforts were exerted to investigate the formation mechanism of the crossing-point temperature (CPT) and the impact of experimental settings on this parameter, aiming at the consolidation of the physical basis of this test method and paving the way for its further development. In light of the principles of heat and mass transfer, the thermal response of a coal sample stored in a cylindrical reactor exposed to linear heating environment was monitored. Fine coal particles were prepared and packed in the reactor with very thin wall, while the moisture content of a sample varied between 5 % and 20 %. The traced temperature histories are in agreement with the available experimental data. Observations indicated that the volume element at the sample center heats up by offsetting the heat sink term resulting from water evaporation. When the central temperature of the sample catches up with the environmental temperature, the heat sink term from water evaporation disappears, and the direction of heat flow via conduction is reversed, indicating the development of a self-heating domain. The impact of sample attributes and experimental settings on the measurement process is the actual reflection of the self-heating performance of a coal sample with specific physical properties and under defined environmental conditions. During the CPT measurement, the status of zero conductive heat flow at the central volume element can be monitored simultaneously, thereby extracting the apparent kinetic parameters of the sample oxidation at the same time. The established understanding sheds light on the broader application of this test method.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129007292400303X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The crossing-point temperature measurement is a classical thermal test method for ranking the propensity of coal towards self-heating and spontaneous combustion. Despite its longstanding use, it is still considered an empirical approach due to a lack of understanding on its working mechanism, preventing its wide use and standardization globally. In this paper, efforts were exerted to investigate the formation mechanism of the crossing-point temperature (CPT) and the impact of experimental settings on this parameter, aiming at the consolidation of the physical basis of this test method and paving the way for its further development. In light of the principles of heat and mass transfer, the thermal response of a coal sample stored in a cylindrical reactor exposed to linear heating environment was monitored. Fine coal particles were prepared and packed in the reactor with very thin wall, while the moisture content of a sample varied between 5 % and 20 %. The traced temperature histories are in agreement with the available experimental data. Observations indicated that the volume element at the sample center heats up by offsetting the heat sink term resulting from water evaporation. When the central temperature of the sample catches up with the environmental temperature, the heat sink term from water evaporation disappears, and the direction of heat flow via conduction is reversed, indicating the development of a self-heating domain. The impact of sample attributes and experimental settings on the measurement process is the actual reflection of the self-heating performance of a coal sample with specific physical properties and under defined environmental conditions. During the CPT measurement, the status of zero conductive heat flow at the central volume element can be monitored simultaneously, thereby extracting the apparent kinetic parameters of the sample oxidation at the same time. The established understanding sheds light on the broader application of this test method.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.