24 Factorial Design Formulation Optimization and In vitro Characterization of Desloratadine Nanosuspension Prepared Using Antisolvent Precipitation.

Mohamed T El-Sebaiy, Mohammad H Alyami, Hamad S Alyami, Mohammad Amjad Kamal, Noura Eissa, Gehan Balata, Hanan El-Nahas
{"title":"24 Factorial Design Formulation Optimization and In vitro Characterization of Desloratadine Nanosuspension Prepared Using Antisolvent Precipitation.","authors":"Mohamed T El-Sebaiy, Mohammad H Alyami, Hamad S Alyami, Mohammad Amjad Kamal, Noura Eissa, Gehan Balata, Hanan El-Nahas","doi":"10.2174/0115672018312715240604054857","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Desloratadine, a second-generation antihistaminic drug, is poorly watersoluble and requires amelioration of the dissolution rate to improve its pharmacokinetics properties.</p><p><strong>Method: </strong>This study investigated the impact of polymer, surfactant types, and concentration on the particle size, zeta potential, and dissolution efficiency of nanosuspensions formulated through the solvent antisolvent precipitation method. To optimize the delivery of Desloratadine nanosuspension, we used Minitab software and a 4-factor, 2-level full factorial design. Physicochemical properties and drug release studies were conducted to evaluate the suggested nanosuspension formulations. The optimization goals included minimizing particle size and zeta potential while maximizing dissolution efficiencies.</p><p><strong>Result: </strong>The selected optimal nanosuspension demonstrated favourable values, including a particle size of 478.63 ± 15.67 nm, a zeta potential of -36.24 ± 3.21 mV, and dissolution efficiencies in double distilled water and buffer of 90.29 ± 3.75 % and 93.70 ± 3.67 %, respectively. The optimized formulation was subjected to additional analysis using X-ray powder diffraction (XPRD), scanning and transmission electron microscopy (SEM and TEM), and Fourier-transform infrared spectroscopy (FTIR).</p><p><strong>Conclusion: </strong>The optimized nanosuspension formulation also underwent further studies under optimal lyophilization conditions, revealing the effectiveness of mannitol as a cryoprotectant at a concentration of 8%.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672018312715240604054857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Desloratadine, a second-generation antihistaminic drug, is poorly watersoluble and requires amelioration of the dissolution rate to improve its pharmacokinetics properties.

Method: This study investigated the impact of polymer, surfactant types, and concentration on the particle size, zeta potential, and dissolution efficiency of nanosuspensions formulated through the solvent antisolvent precipitation method. To optimize the delivery of Desloratadine nanosuspension, we used Minitab software and a 4-factor, 2-level full factorial design. Physicochemical properties and drug release studies were conducted to evaluate the suggested nanosuspension formulations. The optimization goals included minimizing particle size and zeta potential while maximizing dissolution efficiencies.

Result: The selected optimal nanosuspension demonstrated favourable values, including a particle size of 478.63 ± 15.67 nm, a zeta potential of -36.24 ± 3.21 mV, and dissolution efficiencies in double distilled water and buffer of 90.29 ± 3.75 % and 93.70 ± 3.67 %, respectively. The optimized formulation was subjected to additional analysis using X-ray powder diffraction (XPRD), scanning and transmission electron microscopy (SEM and TEM), and Fourier-transform infrared spectroscopy (FTIR).

Conclusion: The optimized nanosuspension formulation also underwent further studies under optimal lyophilization conditions, revealing the effectiveness of mannitol as a cryoprotectant at a concentration of 8%.

24 采用抗溶剂沉淀法制备的地氯雷他定纳米悬浮液的因子设计配方优化和体外表征
简介地氯雷他定是一种第二代抗组胺药物,水溶性较差,需要改善溶出率以提高其药代动力学特性:本研究探讨了聚合物、表面活性剂类型和浓度对通过溶剂反沉淀法配制的纳米悬浮剂的粒度、ZETA电位和溶解效率的影响。为了优化地氯雷他定纳米悬浮剂的给药,我们使用了 Minitab 软件和 4 因子 2 级全因子设计。对建议的纳米悬浮剂配方进行了理化性质和药物释放研究。优化目标包括最小化粒度和 zeta 电位,同时最大化溶出效率:结果:选定的最佳纳米悬浮液表现出良好的数值,包括粒径为 478.63 ± 15.67 nm,zeta 电位为 -36.24 ± 3.21 mV,在双蒸馏水和缓冲液中的溶出效率分别为 90.29 ± 3.75 % 和 93.70 ± 3.67 %。对优化后的配方还进行了 X 射线粉末衍射(XPRD)、扫描和透射电子显微镜(SEM 和 TEM)以及傅立叶变换红外光谱(FTIR)分析:结论:优化后的纳米悬浮剂配方还在最佳冻干条件下进行了进一步研究,结果表明甘露醇浓度为 8%时可有效用作低温保护剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信