Anna V. Motorzhina, Stanislav E. Pshenichnikov, Anton A. Anikin, Victor K. Belyaev, Alexander N. Yakunin, Sergey V. Zarkov, Valery V. Tuchin, Sonja Jovanović, Claudio Sangregorio, Valeria V. Rodionova, Larissa V. Panina, Kateryna V. Levada
{"title":"Gold/cobalt ferrite nanocomposite as a potential agent for photothermal therapy","authors":"Anna V. Motorzhina, Stanislav E. Pshenichnikov, Anton A. Anikin, Victor K. Belyaev, Alexander N. Yakunin, Sergey V. Zarkov, Valery V. Tuchin, Sonja Jovanović, Claudio Sangregorio, Valeria V. Rodionova, Larissa V. Panina, Kateryna V. Levada","doi":"10.1002/jbio.202300475","DOIUrl":null,"url":null,"abstract":"<p>The study encompasses an investigation of optical, photothermal and biocompatibility properties of a composite consisting of golden cores surrounded by superparamagnetic CoFe<sub>2</sub>O<sub>4</sub> nanoparticles. Accompanied with the experiment, the computational modeling reveals that each adjusted magnetic nanoparticle redshifts the plasmon resonance frequency in gold and nonlinearly increases the extinction cross-section at ~800 nm. The concentration dependent photothermal study demonstrates a temperature increase of 8.2 K and the photothermal conversion efficiency of 51% for the 100 μg/mL aqueous solution of the composite nanoparticles, when subjected to a laser power of 0.5 W at 815 nm. During an in vitro photothermal therapy, a portion of the composite nanoparticles, initially seeded at this concentration, remained associated with the cells after washing. These retained nanoparticles effectively heated the cell culture medium, resulting in a 22% reduction in cell viability after 15 min of the treatment. The composite features a potential in multimodal magneto-plasmonic therapies.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202300475","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The study encompasses an investigation of optical, photothermal and biocompatibility properties of a composite consisting of golden cores surrounded by superparamagnetic CoFe2O4 nanoparticles. Accompanied with the experiment, the computational modeling reveals that each adjusted magnetic nanoparticle redshifts the plasmon resonance frequency in gold and nonlinearly increases the extinction cross-section at ~800 nm. The concentration dependent photothermal study demonstrates a temperature increase of 8.2 K and the photothermal conversion efficiency of 51% for the 100 μg/mL aqueous solution of the composite nanoparticles, when subjected to a laser power of 0.5 W at 815 nm. During an in vitro photothermal therapy, a portion of the composite nanoparticles, initially seeded at this concentration, remained associated with the cells after washing. These retained nanoparticles effectively heated the cell culture medium, resulting in a 22% reduction in cell viability after 15 min of the treatment. The composite features a potential in multimodal magneto-plasmonic therapies.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.