Mahmood Ul Hassan, Amin A Al-Awady, Naeem Ahmed, Muhammad Saeed, Jarallah Alqahtani, Ali Mousa Mohamed Alahmari, Muhammad Wasim Javed
{"title":"A transfer learning enabled approach for ocular disease detection and classification.","authors":"Mahmood Ul Hassan, Amin A Al-Awady, Naeem Ahmed, Muhammad Saeed, Jarallah Alqahtani, Ali Mousa Mohamed Alahmari, Muhammad Wasim Javed","doi":"10.1007/s13755-024-00293-8","DOIUrl":null,"url":null,"abstract":"<p><p>Ocular diseases pose significant challenges in timely diagnosis and effective treatment. Deep learning has emerged as a promising technique in medical image analysis, offering potential solutions for accurately detecting and classifying ocular diseases. In this research, we propose Ocular Net, a novel deep learning model for detecting and classifying ocular diseases, including Cataracts, Diabetic, Uveitis, and Glaucoma, using a large dataset of ocular images. The study utilized an image dataset comprising 6200 images of both eyes of patients. Specifically, 70% of these images (4000 images) were allocated for model training, while the remaining 30% (2200 images) were designated for testing purposes. The dataset contains images of five categories that include four diseases, and one normal category. The proposed model uses transfer learning, average pooling layers, Clipped Relu, Leaky Relu and various other layers to accurately detect the ocular diseases from images. Our approach involves training a novel Ocular Net model on diverse ocular images and evaluating its accuracy and performance metrics for disease detection. We also employ data augmentation techniques to improve model performance and mitigate overfitting. The proposed model is tested on different training and testing ratios with varied parameters. Additionally, we compare the performance of the Ocular Net with previous methods based on various evaluation parameters, assessing its potential for enhancing the accuracy and efficiency of ocular disease diagnosis. The results demonstrate that Ocular Net achieves 98.89% accuracy and 0.12% loss value in detecting and classifying ocular diseases by outperforming existing methods.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"12 1","pages":"36"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-024-00293-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ocular diseases pose significant challenges in timely diagnosis and effective treatment. Deep learning has emerged as a promising technique in medical image analysis, offering potential solutions for accurately detecting and classifying ocular diseases. In this research, we propose Ocular Net, a novel deep learning model for detecting and classifying ocular diseases, including Cataracts, Diabetic, Uveitis, and Glaucoma, using a large dataset of ocular images. The study utilized an image dataset comprising 6200 images of both eyes of patients. Specifically, 70% of these images (4000 images) were allocated for model training, while the remaining 30% (2200 images) were designated for testing purposes. The dataset contains images of five categories that include four diseases, and one normal category. The proposed model uses transfer learning, average pooling layers, Clipped Relu, Leaky Relu and various other layers to accurately detect the ocular diseases from images. Our approach involves training a novel Ocular Net model on diverse ocular images and evaluating its accuracy and performance metrics for disease detection. We also employ data augmentation techniques to improve model performance and mitigate overfitting. The proposed model is tested on different training and testing ratios with varied parameters. Additionally, we compare the performance of the Ocular Net with previous methods based on various evaluation parameters, assessing its potential for enhancing the accuracy and efficiency of ocular disease diagnosis. The results demonstrate that Ocular Net achieves 98.89% accuracy and 0.12% loss value in detecting and classifying ocular diseases by outperforming existing methods.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.