{"title":"In and out: Benchmarking in vitro, in vivo, ex vivo, and xenografting approaches for an integrative brain disease modeling pipeline.","authors":"Marlene F Pereira, Reinald Shyti, Giuseppe Testa","doi":"10.1016/j.stemcr.2024.05.004","DOIUrl":null,"url":null,"abstract":"<p><p>Human cellular models and their neuronal derivatives have afforded unprecedented advances in elucidating pathogenic mechanisms of neuropsychiatric diseases. Notwithstanding their indispensable contribution, animal models remain the benchmark in neurobiological research. In an attempt to harness the best of both worlds, researchers have increasingly relied on human/animal chimeras by xenografting human cells into the animal brain. Despite the unparalleled potential of xenografting approaches in the study of the human brain, literature resources that systematically examine their significance and advantages are surprisingly lacking. We fill this gap by providing a comprehensive account of brain diseases that were thus far subjected to all three modeling approaches (transgenic rodents, in vitro human lineages, human-animal xenografting) and provide a critical appraisal of the impact of xenografting approaches for advancing our understanding of those diseases and brain development. Next, we give our perspective on integrating xenografting modeling pipeline with recent cutting-edge technological advancements.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2024.05.004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Human cellular models and their neuronal derivatives have afforded unprecedented advances in elucidating pathogenic mechanisms of neuropsychiatric diseases. Notwithstanding their indispensable contribution, animal models remain the benchmark in neurobiological research. In an attempt to harness the best of both worlds, researchers have increasingly relied on human/animal chimeras by xenografting human cells into the animal brain. Despite the unparalleled potential of xenografting approaches in the study of the human brain, literature resources that systematically examine their significance and advantages are surprisingly lacking. We fill this gap by providing a comprehensive account of brain diseases that were thus far subjected to all three modeling approaches (transgenic rodents, in vitro human lineages, human-animal xenografting) and provide a critical appraisal of the impact of xenografting approaches for advancing our understanding of those diseases and brain development. Next, we give our perspective on integrating xenografting modeling pipeline with recent cutting-edge technological advancements.
期刊介绍:
Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.