{"title":"Development of an organ-on-chip model for the detection of volatile organic compounds as potential biomarkers of tumour progression.","authors":"Clara Bayona, Magdalena Wrona, Teodora Ranđelović, Cristina Nerín, Jesús Salafranca, Ignacio Ochoa","doi":"10.1088/1758-5090/ad5764","DOIUrl":null,"url":null,"abstract":"<p><p>Early detection of tumours remains a significant challenge due to their invasive nature and the limitations of current monitoring techniques. Liquid biopsies have emerged as a minimally invasive diagnostic approach, wherein volatile organic compounds (VOCs) show potential as compelling candidates. However, distinguishing tumour-specific VOCs is difficult due to the presence of gases from non-tumour tissues and environmental factors. Therefore, it is essential to develop preclinical models that accurately mimic the intricate tumour microenvironment to induce cellular metabolic changes and secretion of tumour-associated VOCs. In this study, a microfluidic device was used to recreate the ischaemic environment within solid tumours for the detection of tumour-derived VOCs. The system represents a significant advance in understanding the role of VOCs as biomarkers for early tumour detection and holds the potential to improve patient prognosis; particularly for inaccessible and rapidly progressing tumours such as glioblastoma.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad5764","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Early detection of tumours remains a significant challenge due to their invasive nature and the limitations of current monitoring techniques. Liquid biopsies have emerged as a minimally invasive diagnostic approach, wherein volatile organic compounds (VOCs) show potential as compelling candidates. However, distinguishing tumour-specific VOCs is difficult due to the presence of gases from non-tumour tissues and environmental factors. Therefore, it is essential to develop preclinical models that accurately mimic the intricate tumour microenvironment to induce cellular metabolic changes and secretion of tumour-associated VOCs. In this study, a microfluidic device was used to recreate the ischaemic environment within solid tumours for the detection of tumour-derived VOCs. The system represents a significant advance in understanding the role of VOCs as biomarkers for early tumour detection and holds the potential to improve patient prognosis; particularly for inaccessible and rapidly progressing tumours such as glioblastoma.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).