{"title":"Principal eigenvalues for Fully Non Linear singular or degenerate operators in punctured balls","authors":"Françoise Demengel","doi":"10.1016/j.nonrwa.2024.104142","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear degenerate or singular uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions <span><math><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><mi>γ</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo></mrow></math></span> of the equation <span><math><mrow><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo></mrow><mo>+</mo><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><mi>γ</mi></mrow></msub><mfrac><mrow><msubsup><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>α</mi></mrow></msubsup></mrow><mrow><msup><mrow><mi>r</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></mfrac><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>B</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on</mtext><mspace></mspace><mi>∂</mi><mi>B</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> in <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>></mo><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>. We prove existence of radial solutions which are continuous on <span><math><mover><mrow><mi>B</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow><mo>¯</mo></mover></math></span> in the case <span><math><mrow><mi>γ</mi><mo><</mo><mn>2</mn><mo>+</mo><mi>α</mi></mrow></math></span>, and a non existence result for <span><math><mrow><mi>γ</mi><mo>></mo><mn>2</mn><mo>+</mo><mi>α</mi></mrow></math></span>. We also give the explicit value of <span><math><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>+</mo><mi>α</mi></mrow></msub></math></span> in the case of the Pucci’s operators, which generalizes the Hardy–Sobolev constant for the Laplacian, and the previous results of Birindelli et al. <span>[1]</span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000828","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear degenerate or singular uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions of the equation where in , and . We prove existence of radial solutions which are continuous on in the case , and a non existence result for . We also give the explicit value of in the case of the Pucci’s operators, which generalizes the Hardy–Sobolev constant for the Laplacian, and the previous results of Birindelli et al. [1].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.