Principal eigenvalues for Fully Non Linear singular or degenerate operators in punctured balls

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Françoise Demengel
{"title":"Principal eigenvalues for Fully Non Linear singular or degenerate operators in punctured balls","authors":"Françoise Demengel","doi":"10.1016/j.nonrwa.2024.104142","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear degenerate or singular uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions <span><math><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><mi>γ</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo></mrow></math></span> of the equation <span><math><mrow><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo></mrow><mo>+</mo><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><mi>γ</mi></mrow></msub><mfrac><mrow><msubsup><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>α</mi></mrow></msubsup></mrow><mrow><msup><mrow><mi>r</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></mfrac><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>B</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on</mtext><mspace></mspace><mi>∂</mi><mi>B</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> in <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>&gt;</mo><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. We prove existence of radial solutions which are continuous on <span><math><mover><mrow><mi>B</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow><mo>¯</mo></mover></math></span> in the case <span><math><mrow><mi>γ</mi><mo>&lt;</mo><mn>2</mn><mo>+</mo><mi>α</mi></mrow></math></span>, and a non existence result for <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>2</mn><mo>+</mo><mi>α</mi></mrow></math></span>. We also give the explicit value of <span><math><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>+</mo><mi>α</mi></mrow></msub></math></span> in the case of the Pucci’s operators, which generalizes the Hardy–Sobolev constant for the Laplacian, and the previous results of Birindelli et al. <span>[1]</span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000828","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear degenerate or singular uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions (λ̄γ,uγ) of the equation |u|αF(D2uγ)+λ̄γuγ1+αrγ=0inB(0,1){0},uγ=0onB(0,1) where uγ>0 in B(0,1), α>1 and γ>0. We prove existence of radial solutions which are continuous on B(0,1)¯ in the case γ<2+α, and a non existence result for γ>2+α. We also give the explicit value of λ̄2+α in the case of the Pucci’s operators, which generalizes the Hardy–Sobolev constant for the Laplacian, and the previous results of Birindelli et al. [1].

穿刺球中全非线性奇异或退化算子的主特征值
本文致力于证明在奇异势存在的情况下,在穿刺球中提出的全非线性退化或奇异均匀椭圆方程的主特征值和相关特征函数的存在性。更确切地说,我们分析了方程 |∇u|αF(D2uγ)+λ̄γuγ1+αrγ=0inB(0,1)∖{0},uγ=0on∂B(0,1)的解(λ̄γ,uγ)的存在性、唯一性和正则性,其中 uγ>0 in B(0,1),α>-1 和 γ>0。我们证明了在γ<2+α情况下,B(0,1)¯上连续的径向解的存在性,以及γ>2+α的非存在性结果。我们还给出了 Pucci 算子情况下 λ̄2+α 的显式值,它概括了拉普拉奇的 Hardy-Sobolev 常量以及 Birindelli 等人 [1] 以前的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信